LLM: first add _tokenize, detokenize and _generate for bloom pybinding (#8316)

This commit is contained in:
binbin Deng 2023-06-14 17:29:57 +08:00 committed by GitHub
parent 5576679a92
commit f64e703083
4 changed files with 300 additions and 20 deletions

View file

@ -46,35 +46,57 @@
# only search the first bigdl package and end up finding only one sub-package.
from .bloom_cpp import bloom_load, bloom_free, bloom_run
from .bloom_cpp import bloom_tokenize, bloom_detokenize, bloom_forward, bloom_eval
from bigdl.llm.utils.common import invalidInputError
from typing import List, Optional
from bigdl.llm.ggml.model.generation import GenerationMixin
from typing import List, Optional, Generator, Sequence, Union
import time
import uuid
class Bloom:
class Bloom(GenerationMixin):
"""High-level Python wrapper for a bloom.cpp model."""
def __init__(self,
model_path: str,
n_ctx: int = 512,
seed: int = 1337,
logits_all: bool = False,
n_threads: int = 2,
n_batch: int = 8,
last_n_tokens_size: int = 64,
verbose: bool = True,
):
def __init__(
self,
model_path: str,
n_ctx: int = 512,
n_parts: int = -1,
n_gpu_layers: int = 0,
seed: int = -1,
f16_kv: bool = True,
logits_all: bool = False,
vocab_only: bool = False,
use_mmap: bool = True,
use_mlock: bool = False,
embedding: bool = False,
n_threads: Optional[int] = 2,
n_batch: int = 512,
last_n_tokens_size: int = 64,
lora_base: Optional[str] = None,
lora_path: Optional[str] = None,
verbose: bool = True,
):
"""Load a bloom.cpp model from `model_path`.
Args:
model_path: Path to the model.
n_ctx: Maximum context size.
seed: Random seed. 0 for random.
n_parts: Number of parts to split the model into. If -1, the number of parts
is automatically determined.
seed: Random seed. For default value -1, current timestamp is used as seed.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.
use_mmap: Use mmap if possible.
use_mlock: Force the system to keep the model in RAM.
embedding: Embedding mode only.
n_threads: Number of threads to use. Default to be 2.
n_batch: Maximum number of prompt tokens to batch together when calling llama_eval.
n_batch: Maximum number of prompt tokens to batch together when calling bloom_eval.
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
lora_base: Optional path to base model, useful if using a quantized base model and
you want to apply LoRA to an f16 model.
lora_path: Path to a LoRA file to apply to the model.
verbose: Print verbose output to stderr.
Raises:
@ -87,15 +109,73 @@ class Bloom:
self.ctx = bloom_load(bytes(model_path, encoding='utf-8'), n_ctx, n_threads)
invalidInputError(self.ctx is not None, f"Failed to load model from {model_path}")
self.n_ctx = n_ctx
self.n_parts = n_parts
self.n_gpu_layers = n_gpu_layers
self.f16_kv = f16_kv
self.seed = seed
self.logits_all = logits_all
self.vocab_only = vocab_only
self.use_mmap = use_mmap
self.use_mlock = use_mlock
self.embedding = embedding
self.n_threads = n_threads
self.n_batch = n_batch
self.last_n_tokens_size = last_n_tokens_size
self.lora_base = lora_base
self.lora_path = lora_path
self.verbose = verbose
# TODO: Some parameters are temporarily not supported
unsupported_arg = {'n_parts': -1, 'n_gpu_layers': 0, 'f16_kv': True, 'logits_all': False,
'vocab_only': False, 'use_mmap': True, 'use_mlock': False,
'embedding': False, 'last_n_tokens_size': 64, 'lora_base': None,
'lora_path': None, 'verbose': True}
for arg in unsupported_arg.keys():
invalidInputError(getattr(self, arg) == unsupported_arg[arg], f"The parameter {arg}"
" is temporarily unsupported, please use the default value.")
def __call__(
self,
prompt: str,
suffix: Optional[str] = None,
max_tokens: int = 128,
temperature: float = 0.8,
top_p: float = 0.95,
logprobs: Optional[int] = None,
echo: bool = False,
stop: Optional[Union[str, List[str]]]=[],
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
repeat_penalty: float = 1.1,
top_k: int = 40,
stream: bool = False,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
model: Optional[str] = None,
):
# TODO: Some parameters are temporarily not supported
# Unsupported parameters are checked in `_supported_call`
return self._supported_call(prompt, max_tokens, stream, stop,
suffix, temperature, top_p, logprobs, echo, frequency_penalty,
presence_penalty, repeat_penalty, top_k, tfs_z, mirostat_mode,
mirostat_tau, mirostat_eta, model)
def _supported_call(self, prompt: str, max_tokens: int, stream: bool = False,
stop: Optional[List[str]] = [], *args):
# Check unsupporeted parameters
unsupported_arg = ['suffix', 'temperature', 'top_p', 'logprobs', 'echo',
'frequency_penalty', 'presence_penalty', 'repeat_penalty', 'top_k',
'tfs_z', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'model']
defult_value = {'suffix': None, 'temperature': 0.8, 'top_p': 0.95, 'logprobs': None,
'echo': False, 'frequency_penalty': 0.0, 'presence_penalty': 0.0,
'repeat_penalty': 1.1, 'top_k': 40, 'tfs_z': 1.0, 'mirostat_mode': 0,
'mirostat_tau': 5.0, 'mirostat_eta': 0.1, 'model': None}
for index in range(len(args)):
invalidInputError(args[index] == defult_value[unsupported_arg[index]],
f"The parameter {unsupported_arg[index]} is temporarily "
"unsupported, please use the default value.")
def __call__(self, prompt: str, max_tokens: int = 128, stream: bool = False,
stop: Optional[List[str]] = []):
if stream:
return self.stream(prompt, max_tokens, stop)
else:
@ -221,3 +301,113 @@ class Bloom:
def free(self):
bloom_free(self.ctx)
def _tokenize(self, text: bytes, add_bos: bool = False) -> List[int]:
"""Tokenize a string.
Args:
text: The utf-8 encoded string to tokenize.
Raises:
RuntimeError: If the tokenization failed.
Returns:
A list of tokens.
"""
invalidInputError(self.ctx is not None, "The attribute `ctx` of `Bloom` object is None.")
return bloom_tokenize(self.ctx, text, False)
def detokenize(self, tokens: List[int]) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
Returns:
The detokenized string.
"""
invalidInputError(self.ctx is not None, "The attribute `ctx` of `Bloom` object is None.")
output = ""
for token in tokens:
output += bloom_detokenize(self.ctx, token)
return output.encode('utf-8')
def forward(self, input_ids: List[int]) -> int:
return bloom_forward(ctx=self.ctx,
input_ids=input_ids,
seed=self.seed,
n_threads=self.n_threads,
n_batch=self.n_batch)
def eval(self, input_ids: List[int]) -> List[List[float]]:
"""Only used for testing accuracy"""
return bloom_eval(ctx=self.ctx,
input_ids=input_ids,
seed=self.seed,
n_threads=self.n_threads,
n_batch=len(input_ids))
def _generate(
self,
tokens: Sequence[int],
top_k: int = 40,
top_p: float = 0.95,
temp: float = 0.80,
repeat_penalty: float = 1.1,
reset: bool = True,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
) -> Generator[int, Optional[Sequence[int]], None]:
"""Create a generator of tokens from a prompt.
Examples:
>>> llm = Bloom(your_model_path)
>>> tokens = llm._tokenize(b"Learning English is")
>>> for token in llm._generate(tokens):
>>> print(llm.detokenize([token]).decode("utf-8", errors="ignore"))
Args:
tokens: The prompt tokens.
Yields:
The generated tokens.
"""
# TODO: Some parameters are temporarily not supported
# Unsupported parameters are checked in `_supported_generate`
return self._supported_generate(tokens, top_k, top_p, temp, repeat_penalty, reset,
frequency_penalty, presence_penalty, tfs_z, mirostat_mode,
mirostat_tau, mirostat_eta)
def _supported_generate(self, tokens: Sequence[int], *args):
# Check unsupporeted parameters
unsupported_arg = ['top_k', 'top_p', 'temp', 'repeat_penalty', 'reset',
'frequency_penalty', 'presence_penalty', 'tfs_z', 'mirostat_mode',
'mirostat_tau', 'mirostat_eta']
defult_value = {'top_k': 40, 'top_p': 0.95, 'temp': 0.80, 'repeat_penalty': 1.1,
'reset': True, 'frequency_penalty': 0.0, 'presence_penalty': 0.0,
'tfs_z': 1.0, 'mirostat_mode': 0, 'mirostat_tau': 5.0, 'mirostat_eta': 0.1}
for index in range(len(args)):
invalidInputError(args[index] == defult_value[unsupported_arg[index]],
f"The parameter {unsupported_arg[index]} is temporarily "
"unsupported, please use the default value.")
invalidInputError(self.ctx is not None, "The attribute `ctx` of `Bloom` object is None.")
while True:
token = self.forward(tokens)
tokens_or_none = yield token
tokens.append(token)
if tokens_or_none is not None:
tokens.extend(tokens_or_none)
def embed(self, prompt: Union[str, bytes]) -> List[float]:
"""Only used for langchain"""
input_ids = self.tokenize(prompt)
return bloom_embed(ctx=self.ctx,
input_ids=input_ids,
seed=self.seed,
n_threads=self.n_threads,
n_batch=len(input_ids))

View file

@ -48,13 +48,16 @@
import sys
import os
import ctypes
from typing import List
from ctypes import (
c_int,
c_long,
c_float,
c_char_p,
c_void_p,
c_bool,
POINTER,
pointer,
Structure,
Array,
c_uint8,
@ -116,6 +119,14 @@ _lib_base_name = "bloom"
_lib = _load_shared_library(_lib_base_name)
def c_free(p: c_void_p):
_lib.c_free(p)
_lib.c_free.argtypes = [c_void_p]
_lib.c_free.restype = None
def bloom_load(fname: bytes, n_ctx: c_int, n_threads: c_int) -> c_void_p:
return _lib.bloom_load(fname, n_ctx, n_threads)
@ -146,4 +157,83 @@ def bloom_run(ctx: c_void_p,
_lib.bloom_run.argtypes = [c_void_p, c_int, c_int, c_int, c_int, c_bool, c_char_p, c_char_p]
_lib.bloom_run.restype = c_int
def bloom_tokenize(ctx: c_void_p,
prompt: bytes,
bos: bool = False) -> List[int]:
n_tokens = c_int(0)
c_tokens = _lib.tokenize_api(ctx, prompt, bos, pointer(n_tokens))
tokens = [c_tokens[i] for i in range(0, n_tokens.value)]
c_free(c_tokens)
return tokens
_lib.tokenize_api.argtypes = [c_void_p, c_char_p, c_bool, c_void_p]
_lib.tokenize_api.restype = POINTER(c_int)
def bloom_detokenize(ctx: c_void_p,
token_id: c_int) -> str:
c_chars = _lib.detokenize_api(ctx, token_id)
s = c_chars.decode('utf-8')
return s
_lib.detokenize_api.argtypes = [c_void_p, c_int]
_lib.detokenize_api.restype = c_char_p
def bloom_eval(ctx: c_void_p,
input_ids: List[int],
seed: c_int,
n_threads: c_int,
n_batch: c_int) -> List[List[float]]:
length = len(input_ids)
c_input_ids = (c_int * length)(*input_ids)
n_logits = c_long(0)
c_logits = _lib.eval_api(ctx, c_input_ids, length, seed, n_threads, n_batch, pointer(n_logits))
n_vocab = n_logits.value // length
assert(n_vocab * length == n_logits.value)
logits = [[c_logits[i * n_vocab + j] for j in range(n_vocab)] for i in range(length)]
# do not free c_logits
return logits
_lib.eval_api.argtypes = [c_void_p, c_void_p, c_int, c_int, c_int, c_int, c_void_p]
_lib.eval_api.restype = POINTER(c_float)
def bloom_embed(ctx: c_void_p,
input_ids: List[int],
seed: c_int,
n_threads: c_int,
n_batch: c_int) -> List[float]:
length = len(input_ids)
c_input_ids = (c_int * length)(*input_ids)
n_embd = c_long(0)
c_embeddings = _lib.embed_api(ctx, c_input_ids, length, seed, n_threads,
n_batch, pointer(n_embd))
embeddings = [c_embeddings[i] for i in range(n_embd.value)]
# do not free c_embeddings
return embeddings
_lib.embed_api.argtypes = [c_void_p, c_void_p, c_int, c_int, c_int, c_int, c_void_p]
_lib.embed_api.restype = POINTER(c_float)
def bloom_forward(ctx: c_void_p,
input_ids: List[int],
seed: c_int,
n_threads: c_int,
n_batch: c_int) -> int:
length = len(input_ids)
c_input_ids = (c_int * length)(*input_ids)
token_id = _lib.forward_api(ctx, c_input_ids, length, seed, n_threads, n_batch)
return token_id
_lib.forward_api.argtypes = [c_void_p, c_void_p, c_int, c_int, c_int, c_int]
_lib.forward_api.restype = c_int
# ------------------------------------------------------------------- #

View file

@ -132,7 +132,7 @@ class Gptneox(GenerationMixin):
n_ctx: int = 512,
n_parts: int = -1,
n_gpu_layers: int = 0,
seed: int = 1337,
seed: int = -1,
f16_kv: bool = True,
logits_all: bool = False,
vocab_only: bool = False,
@ -153,7 +153,7 @@ class Gptneox(GenerationMixin):
n_ctx: Maximum context size.
n_parts: Number of parts to split the model into. If -1,
the number of parts is automatically determined.
seed: Random seed. 0 for random.
seed: Random seed. For default value -1, current timestamp is used as seed.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.

View file

@ -130,7 +130,7 @@ class Llama(GenerationMixin):
n_ctx: int = 512,
n_parts: int = -1,
n_gpu_layers: int = 0,
seed: int = 1337,
seed: int = -1,
f16_kv: bool = True,
logits_all: bool = False,
vocab_only: bool = False,
@ -151,7 +151,7 @@ class Llama(GenerationMixin):
n_ctx: Maximum context size.
n_parts: Number of parts to split the model into. If -1, the number of parts
is automatically determined.
seed: Random seed. 0 for random.
seed: Random seed. For default value -1, current timestamp is used as seed.
f16_kv: Use half-precision for key/value cache.
logits_all: Return logits for all tokens, not just the last token.
vocab_only: Only load the vocabulary no weights.