diff --git a/python/llm/dev/benchmark/perplexity/README.md b/python/llm/dev/benchmark/perplexity/README.md index bcf42ff4..870c8dd8 100644 --- a/python/llm/dev/benchmark/perplexity/README.md +++ b/python/llm/dev/benchmark/perplexity/README.md @@ -1,25 +1,32 @@ # Perplexity -Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation was from [transformers/perplexity](https://huggingface.co/docs/transformers/perplexity#perplexity-of-fixed-length-models) and [benchmark_patch_llm.py](https://github.com/insuhan/hyper-attn/blob/main/benchmark_patch_llm.py) +Perplexity (PPL) is one of the most common metrics for evaluating language models. This benchmark implementation is adapted from [transformers/perplexity](https://huggingface.co/docs/transformers/perplexity#perplexity-of-fixed-length-models) and [benchmark_patch_llm.py](https://github.com/insuhan/hyper-attn/blob/main/benchmark_patch_llm.py) + +## Run on Wikitext + +Download the dataset from [here](https://paperswithcode.com/dataset/wikitext-2), unzip it and we will use the test dataset `wiki.test.raw` for evaluation. -## HOW TO RUN ```bash -python run.py --model_path --precisions sym_int4 fp4 mixed_fp4 sym_int8 fp8_e5m2 fp8_e4m3 mixed_fp8 --device xpu --datasets dataset_names --dataset_path --language en +python run_wikitext.py --model_path meta-llama/Meta-Llama-3-8B/ --data_path wikitext-2-raw-v1/wikitext-2-raw/wiki.test.raw --precision sym_int4 --use-cache --device xpu + +# Run with stride +python run_wikitext.py --model_path meta-llama/Meta-Llama-3-8B/ --data_path wikitext-2-raw-v1/wikitext-2-raw/wiki.test.raw --precision fp16 --device xpu --stride 512 +``` + +## Run on [THUDM/LongBench](https://github.com/THUDM/LongBench) dataset + +```bash +python run.py --model_path --precisions sym_int4 fp8 --device xpu --datasets dataset_names --dataset_path --language en ``` A more specific example to run perplexity on Llama2-7B using the default English datasets: ```bash python run.py --model_path meta-llama/Llama-2-7b-chat-hf --precisions float16 sym_int4 --device xpu --language en ``` -> Note: We currently only support the `THUDM/LongBench` [dataset](https://github.com/THUDM/LongBench) - +Notes: - If you want to test model perplexity on a few selected datasets from the `LongBench` dataset, please use the format below. ```bash --datasets narrativeqa qasper ... ``` - The `language` argument will only take effect if `datasets` is `None`. The choices for this argument are `en, zh, all`, which stands for all the English datasets, all the Chinese datasets and all the datasets respectively during testing. - If you want to test perplexity on pre-downloaded datasets, please specify the `` in the `dataset_path` argument in your command. - -## Summarize the results -```python -python make_table.py -``` +- You can run `python make_table.py ` to summarize the results. diff --git a/python/llm/dev/benchmark/perplexity/ppl.py b/python/llm/dev/benchmark/perplexity/ppl.py index d340297e..b0e4ac42 100644 --- a/python/llm/dev/benchmark/perplexity/ppl.py +++ b/python/llm/dev/benchmark/perplexity/ppl.py @@ -13,6 +13,9 @@ # See the License for the specific language governing permissions and # limitations under the License. # +# This file is adapted from +# https://github.com/insuhan/hyper-attn/blob/main/benchmark_patch_llm.py +# import numpy as np import torch diff --git a/python/llm/dev/benchmark/perplexity/run.py b/python/llm/dev/benchmark/perplexity/run.py index 881d82e0..92b4999a 100644 --- a/python/llm/dev/benchmark/perplexity/run.py +++ b/python/llm/dev/benchmark/perplexity/run.py @@ -13,6 +13,9 @@ # See the License for the specific language governing permissions and # limitations under the License. # +# This file is adapted from +# https://github.com/insuhan/hyper-attn/blob/main/benchmark_patch_llm.py +# import argparse from tqdm import tqdm diff --git a/python/llm/dev/benchmark/perplexity/run_wikitext.py b/python/llm/dev/benchmark/perplexity/run_wikitext.py index f308ed93..a5b7dea3 100644 --- a/python/llm/dev/benchmark/perplexity/run_wikitext.py +++ b/python/llm/dev/benchmark/perplexity/run_wikitext.py @@ -1,21 +1,35 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# This file is adapted from +# https://huggingface.co/docs/transformers/en/perplexity +# + import argparse import torch -from datasets import load_dataset from tqdm import tqdm -def parse_kwargs(kwstr): - kvpair = [item.split('=') for item in kwstr.split(',') if item != ""] - return {k:v for k, v in kvpair} - - parser = argparse.ArgumentParser() parser.add_argument("--model_path", required=True, type=str) -parser.add_argument("--dataset", type=str, default='path=wikitext,name=wikitext-2-raw-v1') +parser.add_argument("--data_path", type=str, default='wikitext-2-raw-v1/wikitext-2-raw/wiki.test.raw') +parser.add_argument("--chunk_size", type=int, default=512) +parser.add_argument("--stride", type=int, default=0) parser.add_argument("--device", type=str, default="xpu") parser.add_argument("--precision", type=str, default="sym_int4") parser.add_argument("--use-cache", action="store_true") -parser.add_argument("--limit", type=int, default=None, help="Limit the number of examples per task. For debug only") args = parser.parse_args() if args.precision == "fp16": # ipex fp16 @@ -31,24 +45,30 @@ else: # ipex-llm model = model.half() model = model.to(args.device) +with open(args.data_path, "rb") as f: + data = f.read() + from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True) - -test = load_dataset(**parse_kwargs(args.dataset), split="test")["text"] -if args.limit: - test = test[:args.limit] -encodings = tokenizer("\n\n".join(test), return_tensors="pt") +encodings = tokenizer(data.decode("utf-8").strip("\n"), return_tensors="pt") max_length = model.config.max_position_embeddings -stride = 512 +stride = args.chunk_size if args.stride <= 0 else args.stride seq_len = encodings.input_ids.size(1) +num_chunks = seq_len // stride nlls = [] prev_end_loc = 0 -for begin_loc in tqdm(range(0, seq_len, stride)): - end_loc = min(begin_loc + max_length, seq_len) - trg_len = end_loc - prev_end_loc # may be different from stride on last loop +for i in tqdm(range(num_chunks)): + begin_loc = i * stride + if args.stride > 0: + end_loc = min(begin_loc + max_length, seq_len) + trg_len = end_loc - prev_end_loc # may be different from stride on last loop + else: + end_loc = begin_loc + stride + trg_len = -stride//2 input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device) + if args.stride == 0: input_ids[:, 0] = tokenizer.bos_token_id target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 @@ -69,4 +89,4 @@ for begin_loc in tqdm(range(0, seq_len, stride)): break ppl = torch.exp(torch.stack(nlls).mean()) -print("ppl result: {}".format(ppl.item())) +print("Final ppl estimate: {}".format(ppl.item()))