Small update to NPU example readme (#12034)
* Small update to NPU example readme * Small fix
This commit is contained in:
parent
0d04531ae0
commit
f61b1785fb
2 changed files with 13 additions and 7 deletions
|
|
@ -21,7 +21,7 @@ In this directory, you will find examples on how to directly run HuggingFace `tr
|
||||||
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
||||||
Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver.
|
Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver.
|
||||||
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
|
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
|
||||||
Right click and select **Update Driver**. And then manually select the folder unzipped from the driver.
|
Right click and select **Update Driver** -> **Browse my computer for drivers**. And then manually select the unzipped driver folder to install.
|
||||||
|
|
||||||
## 1. Install
|
## 1. Install
|
||||||
### 1.1 Installation on Windows
|
### 1.1 Installation on Windows
|
||||||
|
|
@ -104,11 +104,11 @@ python llama.py
|
||||||
# to run Meta-Llama-3-8B-Instruct (LNL driver version: 32.0.101.2715)
|
# to run Meta-Llama-3-8B-Instruct (LNL driver version: 32.0.101.2715)
|
||||||
python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct
|
python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
# to run Qwen2-1.5B-Instruct
|
# to run Qwen2-1.5B-Instruct LNL driver version: 32.0.101.2715)
|
||||||
python qwen2.py
|
python qwen2.py
|
||||||
|
|
||||||
# to run Qwen2-7B-Instruct
|
# to run Qwen2-7B-Instruct LNL driver version: 32.0.101.2715)
|
||||||
python qwen2.py --repo-id-or-model-path Qwen/Qwen2-7B-Instruct
|
python qwen2.py --repo-id-or-model-path Qwen/Qwen2-7B-Instruct
|
||||||
|
|
||||||
# to run MiniCPM-1B-sft-bf16
|
# to run MiniCPM-1B-sft-bf16
|
||||||
python minicpm.py
|
python minicpm.py
|
||||||
|
|
@ -135,19 +135,25 @@ Arguments info:
|
||||||
If you encounter output problem, please try to disable the optimization of transposing value cache with following command:
|
If you encounter output problem, please try to disable the optimization of transposing value cache with following command:
|
||||||
```bash
|
```bash
|
||||||
# to run Llama-2-7b-chat-hf
|
# to run Llama-2-7b-chat-hf
|
||||||
python llama.py --disable-transpose-value-cache
|
python llama.py --disable-transpose-value-cache
|
||||||
|
|
||||||
# to run Meta-Llama-3-8B-Instruct (LNL driver version: 32.0.101.2715)
|
# to run Meta-Llama-3-8B-Instruct (LNL driver version: 32.0.101.2715)
|
||||||
python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct --disable-transpose-value-cache
|
python llama.py --repo-id-or-model-path meta-llama/Meta-Llama-3-8B-Instruct --disable-transpose-value-cache
|
||||||
|
|
||||||
# to run Qwen2-1.5B-Instruct
|
# to run Qwen2-1.5B-Instruct (LNL driver version: 32.0.101.2715)
|
||||||
python qwen2.py --disable-transpose-value-cache
|
python qwen2.py --disable-transpose-value-cache
|
||||||
|
|
||||||
|
# to run Qwen2-7B-Instruct LNL driver version: 32.0.101.2715)
|
||||||
|
python qwen2.py --repo-id-or-model-path Qwen/Qwen2-7B-Instruct --disable-transpose-value-cache
|
||||||
|
|
||||||
# to run MiniCPM-1B-sft-bf16
|
# to run MiniCPM-1B-sft-bf16
|
||||||
python minicpm.py --disable-transpose-value-cache
|
python minicpm.py --disable-transpose-value-cache
|
||||||
|
|
||||||
# to run MiniCPM-2B-sft-bf16 (LNL driver version: 32.0.101.2715)
|
# to run MiniCPM-2B-sft-bf16 (LNL driver version: 32.0.101.2715)
|
||||||
python minicpm.py --repo-id-or-model-path openbmb/MiniCPM-2B-sft-bf16 --disable-transpose-value-cache
|
python minicpm.py --repo-id-or-model-path openbmb/MiniCPM-2B-sft-bf16 --disable-transpose-value-cache
|
||||||
|
|
||||||
|
# to run Baichuan2-7B-Chat
|
||||||
|
python baichuan2.py --disable-transpose-value-cache
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Better Performance with High CPU Utilization
|
#### Better Performance with High CPU Utilization
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
|
||||||
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
||||||
Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver.
|
Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver.
|
||||||
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
|
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
|
||||||
Right click and select **Update Driver**. And then manually select the folder unzipped from the driver.
|
Right click and select **Update Driver** -> **Browse my computer for drivers**. And then manually select the unzipped driver folder to install.
|
||||||
|
|
||||||
## Example: Predict Tokens using `generate()` API
|
## Example: Predict Tokens using `generate()` API
|
||||||
In the example [generate.py](./generate.py), we show a basic use case for a phi-3-vision model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs.
|
In the example [generate.py](./generate.py), we show a basic use case for a phi-3-vision model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs.
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue