Add whisper test (#9808)

* add whisper benchmark code

* add librispeech_asr.py

* add bigdl license
This commit is contained in:
dingbaorong 2024-01-02 16:36:05 +08:00 committed by GitHub
parent 6584539c91
commit f5752ead36
6 changed files with 687 additions and 0 deletions

View file

@ -0,0 +1,295 @@
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Librispeech automatic speech recognition dataset."""
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
"""
_DESCRIPTION = """\
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
"""
_URL = "http://www.openslr.org/12"
#_DL_URL = "http://www.openslr.org/resources/12/"
_DL_URL = "./librispeech/"
_DL_URLS = {
"clean": {
"dev": _DL_URL + "dev-clean.tar.gz",
"test": _DL_URL + "test-clean.tar.gz",
"train.100": _DL_URL + "train-clean-100.tar.gz",
"train.360": _DL_URL + "train-clean-360.tar.gz",
},
"other": {
"test": _DL_URL + "test-other.tar.gz",
"dev": _DL_URL + "dev-other.tar.gz",
"train.500": _DL_URL + "train-other-500.tar.gz",
},
"all": {
"dev.clean": _DL_URL + "dev-clean.tar.gz",
"dev.other": _DL_URL + "dev-other.tar.gz",
"test.clean": _DL_URL + "test-clean.tar.gz",
"test.other": _DL_URL + "test-other.tar.gz",
#"train.clean.100": _DL_URL + "train-clean-100.tar.gz",
#"train.clean.360": _DL_URL + "train-clean-360.tar.gz",
#"train.other.500": _DL_URL + "train-other-500.tar.gz",
},
}
class LibrispeechASRConfig(datasets.BuilderConfig):
"""BuilderConfig for LibriSpeechASR."""
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
class LibrispeechASR(datasets.GeneratorBasedBuilder):
"""Librispeech dataset."""
DEFAULT_WRITER_BATCH_SIZE = 256
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
LibrispeechASRConfig(name="clean", description="'Clean' speech."),
LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
LibrispeechASRConfig(name="all", description="Combined clean and other dataset."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_DL_URLS[self.config.name])
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
if self.config.name == "clean":
train_splits = [
datasets.SplitGenerator(
name="train.100",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.100"),
"files": dl_manager.iter_archive(archive_path["train.100"]),
},
),
datasets.SplitGenerator(
name="train.360",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.360"),
"files": dl_manager.iter_archive(archive_path["train.360"]),
},
),
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev"),
"files": dl_manager.iter_archive(archive_path["dev"]),
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test"),
"files": dl_manager.iter_archive(archive_path["test"]),
},
)
]
elif self.config.name == "other":
train_splits = [
datasets.SplitGenerator(
name="train.500",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.500"),
"files": dl_manager.iter_archive(archive_path["train.500"]),
},
)
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev"),
"files": dl_manager.iter_archive(archive_path["dev"]),
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test"),
"files": dl_manager.iter_archive(archive_path["test"]),
},
)
]
elif self.config.name == "all":
#train_splits = [
# datasets.SplitGenerator(
# name="train.clean.100",
# gen_kwargs={
# "local_extracted_archive": local_extracted_archive.get("train.clean.100"),
# "files": dl_manager.iter_archive(archive_path["train.clean.100"]),
# },
# ),
# datasets.SplitGenerator(
# name="train.clean.360",
# gen_kwargs={
# "local_extracted_archive": local_extracted_archive.get("train.clean.360"),
# "files": dl_manager.iter_archive(archive_path["train.clean.360"]),
# },
# ),
# datasets.SplitGenerator(
# name="train.other.500",
# gen_kwargs={
# "local_extracted_archive": local_extracted_archive.get("train.other.500"),
# "files": dl_manager.iter_archive(archive_path["train.other.500"]),
# },
# ),
#]
dev_splits = [
datasets.SplitGenerator(
name="validation.clean",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev.clean"),
"files": dl_manager.iter_archive(archive_path["dev.clean"]),
},
),
datasets.SplitGenerator(
name="validation.other",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev.other"),
"files": dl_manager.iter_archive(archive_path["dev.other"]),
},
),
]
test_splits = [
datasets.SplitGenerator(
name="test.clean",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test.clean"),
"files": dl_manager.iter_archive(archive_path["test.clean"]),
},
),
datasets.SplitGenerator(
name="test.other",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test.other"),
"files": dl_manager.iter_archive(archive_path["test.other"]),
},
),
]
return train_splits + dev_splits + test_splits
def _generate_examples(self, files, local_extracted_archive):
"""Generate examples from a LibriSpeech archive_path."""
key = 0
audio_data = {}
transcripts = []
for path, f in files:
if path.endswith(".flac"):
id_ = path.split("/")[-1][: -len(".flac")]
audio_data[id_] = f.read()
elif path.endswith(".trans.txt"):
for line in f:
if line:
line = line.decode("utf-8").strip()
id_, transcript = line.split(" ", 1)
audio_file = f"{id_}.flac"
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
audio_file = (
os.path.join(local_extracted_archive, audio_file)
if local_extracted_archive
else audio_file
)
transcripts.append(
{
"id": id_,
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"file": audio_file,
"text": transcript,
}
)
if audio_data and len(audio_data) == len(transcripts):
for transcript in transcripts:
audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
yield key, {"audio": audio, **transcript}
key += 1
audio_data = {}
transcripts = []

View file

@ -0,0 +1,78 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datasets import load_dataset
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import WhisperProcessor
import torch
from evaluate import load
import time
import argparse
from bigdl.llm import optimize_model
import intel_extension_for_pytorch as ipex
# python whisper_bigdl.py --model_path ./whisper-pretrained-model/whisper-base --data_type other --device xpu
def get_args():
parser = argparse.ArgumentParser(description="Evaluate Whisper performance and accuracy")
parser.add_argument('--model_path', required=True, help='pretrained model path')
parser.add_argument('--data_type', required=True, help='clean, other')
parser.add_argument('--device', required=False, help='cpu, xpu')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
if args.device == "":
args.device = "cpu"
speech_dataset = load_dataset('./librispeech_asr.py', name=args.data_type, split='test').select(range(500))
processor = WhisperProcessor.from_pretrained(args.model_path)
forced_decoder_ids = processor.get_decoder_prompt_ids(language='en', task='transcribe')
# model = AutoModelForSpeechSeq2Seq.from_pretrained(args.model_path)
# model = optimize_model(model, low_bit="sym_int4", optimize_llm=False, modules_to_not_convert=[]).to(args.device)
model = AutoModelForSpeechSeq2Seq.from_pretrained(args.model_path, load_in_low_bit="sym_int4", optimize_model=True).eval().to(args.device)
# model = AutoModelForSpeechSeq2Seq.from_pretrained(args.model_path, load_in_low_bit="fp8_e5m2", optimize_model=True).eval().to(args.device)
model.config.forced_decoder_ids = None
def map_to_pred(batch):
audio = batch["audio"]
start_time = time.time()
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
batch["reference"] = processor.tokenizer._normalize(batch['text'])
with torch.no_grad():
predicted_ids = model.generate(input_features.to(args.device), forced_decoder_ids=forced_decoder_ids, use_cache=True)[0]
if args.device == "xpu":
torch.xpu.synchronize()
infer_time = time.time() - start_time
transcription = processor.decode(predicted_ids)
batch["prediction"] = processor.tokenizer._normalize(transcription)
batch["length"] = len(audio["array"])/audio["sampling_rate"]
batch["time"] = infer_time
print(batch["reference"])
print(batch["prediction"])
return batch
result = speech_dataset.map(map_to_pred, keep_in_memory=True)
wer = load("wer")
speech_length = sum(result["length"][1:])
prc_time = sum(result["time"][1:])
print("Realtime Factor(RTF) is : %.4f" % (prc_time/speech_length))
print("Realtime X(RTX) is : %.2f" % (speech_length/prc_time))
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))

View file

@ -0,0 +1,158 @@
---
title: WER
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
---
# Metric Card for WER
## Metric description
Word error rate (WER) is a common metric of the performance of an automatic speech recognition (ASR) system.
The general difficulty of measuring the performance of ASR systems lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance), working at the word level.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between [perplexity](https://huggingface.co/metrics/perplexity) and word error rate (see [this article](https://www.cs.cmu.edu/~roni/papers/eval-metrics-bntuw-9802.pdf) for further information).
Word error rate can then be computed as:
`WER = (S + D + I) / N = (S + D + I) / (S + D + C)`
where
`S` is the number of substitutions,
`D` is the number of deletions,
`I` is the number of insertions,
`C` is the number of correct words,
`N` is the number of words in the reference (`N=S+D+C`).
## How to use
The metric takes two inputs: references (a list of references for each speech input) and predictions (a list of transcriptions to score).
```python
from evaluate import load
wer = load("wer")
wer_score = wer.compute(predictions=predictions, references=references)
```
## Output values
This metric outputs a float representing the word error rate.
```
print(wer_score)
0.5
```
This value indicates the average number of errors per reference word.
The **lower** the value, the **better** the performance of the ASR system, with a WER of 0 being a perfect score.
### Values from popular papers
This metric is highly dependent on the content and quality of the dataset, and therefore users can expect very different values for the same model but on different datasets.
For example, datasets such as [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) report a WER in the 1.8-3.3 range, whereas ASR models evaluated on [Timit](https://huggingface.co/datasets/timit_asr) report a WER in the 8.3-20.4 range.
See the leaderboards for [LibriSpeech](https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean) and [Timit](https://paperswithcode.com/sota/speech-recognition-on-timit) for the most recent values.
## Examples
Perfect match between prediction and reference:
```python
from evaluate import load
wer = load("wer")
predictions = ["hello world", "good night moon"]
references = ["hello world", "good night moon"]
wer_score = wer.compute(predictions=predictions, references=references)
print(wer_score)
0.0
```
Partial match between prediction and reference:
```python
from evaluate import load
wer = load("wer")
predictions = ["this is the prediction", "there is an other sample"]
references = ["this is the reference", "there is another one"]
wer_score = wer.compute(predictions=predictions, references=references)
print(wer_score)
0.5
```
No match between prediction and reference:
```python
from evaluate import load
wer = load("wer")
predictions = ["hello world", "good night moon"]
references = ["hi everyone", "have a great day"]
wer_score = wer.compute(predictions=predictions, references=references)
print(wer_score)
1.0
```
## Limitations and bias
WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
## Citation
```bibtex
@inproceedings{woodard1982,
author = {Woodard, J.P. and Nelson, J.T.,
year = {1982},
journal = {Workshop on standardisation for speech I/O technology, Naval Air Development Center, Warminster, PA},
title = {An information theoretic measure of speech recognition performance}
}
```
```bibtex
@inproceedings{morris2004,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
```
## Further References
- [Word Error Rate -- Wikipedia](https://en.wikipedia.org/wiki/Word_error_rate)
- [Hugging Face Tasks -- Automatic Speech Recognition](https://huggingface.co/tasks/automatic-speech-recognition)

View file

@ -0,0 +1,22 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import evaluate
from evaluate.utils import launch_gradio_widget
module = evaluate.load("wer")
launch_gradio_widget(module)

View file

@ -0,0 +1,2 @@
git+https://github.com/huggingface/evaluate@{COMMIT_PLACEHOLDER}
jiwer

View file

@ -0,0 +1,132 @@
# Copyright 2021 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Word Error Ratio (WER) metric. """
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datasets
from jiwer import compute_measures
import evaluate
_CITATION = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
_DESCRIPTION = """\
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.
This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.
Word error rate can then be computed as:
WER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).
This value indicates the average number of errors per reference word. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.
"""
_KWARGS_DESCRIPTION = """
Compute WER score of transcribed segments against references.
Args:
references: List of references for each speech input.
predictions: List of transcriptions to score.
concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.
Returns:
(float): the word error rate
Examples:
>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> wer = evaluate.load("wer")
>>> wer_score = wer.compute(predictions=predictions, references=references)
>>> print(wer_score)
0.5
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class WER(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
codebase_urls=["https://github.com/jitsi/jiwer/"],
reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
],
)
def _compute(self, predictions=None, references=None, concatenate_texts=False):
if concatenate_texts:
return compute_measures(references, predictions)["wer"]
else:
incorrect = 0
total = 0
max = 0
id = 0
id_max = 0
for prediction, reference in zip(predictions, references):
measures = compute_measures(reference, prediction)
if measures["substitutions"] + measures["deletions"] + measures["insertions"] > max:
max = measures["substitutions"] + measures["deletions"] + measures["insertions"]
id_max = id
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
id += 1
print(id_max, max)
print(predictions[id_max])
print(references[id_max])
return incorrect / total