Add benchmark script for pipeline parallel inference (#10873)
This commit is contained in:
parent
46ba962168
commit
f51bf018eb
2 changed files with 131 additions and 6 deletions
|
|
@ -3,7 +3,7 @@ repo_id:
|
|||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
# - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1
|
||||
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
|
||||
num_trials: 3
|
||||
num_beams: 1 # default to greedy search
|
||||
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
||||
|
|
@ -21,6 +21,7 @@ test_api:
|
|||
# - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer
|
||||
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
|
||||
# - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU
|
||||
# - "pipeline_parallel_gpu" # pipeline parallel inference on Intel GPU
|
||||
# - "speculative_gpu"
|
||||
# - "transformer_int4"
|
||||
# - "native_int4"
|
||||
|
|
@ -34,3 +35,5 @@ test_api:
|
|||
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only avaiable now for "pipeline_parallel_gpu" test_api)
|
||||
n_gpu: 2 # number of GPUs to use (only avaiable now for "pipeline_parallel_gpu" test_api)
|
||||
|
|
|
|||
|
|
@ -50,7 +50,7 @@ def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, in
|
|||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
min_new_tokens=out_len, num_beams=num_beams)
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
|
|
@ -63,7 +63,7 @@ def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, in
|
|||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, load_time, model.peak_memory])
|
||||
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False):
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, n_gpu=2):
|
||||
# TODO: make a parameter
|
||||
result= {}
|
||||
if test_api == 'transformer_int4':
|
||||
|
|
@ -108,6 +108,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_speculative_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'speculative_gpu':
|
||||
result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
|
||||
elif test_api == 'pipeline_parallel_gpu':
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype, n_gpu=n_gpu)
|
||||
|
||||
for in_out_pair in in_out_pairs:
|
||||
if result and result[in_out_pair]:
|
||||
|
|
@ -124,7 +126,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
cpu_embedding,
|
||||
round(result[in_out_pair][-1][5], 2),
|
||||
result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) else 'N/A',
|
||||
streaming if 'win' in test_api else 'N/A'],
|
||||
streaming if 'win' in test_api else 'N/A',
|
||||
use_fp16_torch_dtype],
|
||||
)
|
||||
|
||||
|
||||
|
|
@ -1674,6 +1677,125 @@ def run_speculative_gpu(repo_id,
|
|||
return result
|
||||
|
||||
|
||||
def run_pipeline_parallel_gpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials,
|
||||
num_beams,
|
||||
low_bit,
|
||||
batch_size,
|
||||
cpu_embedding,
|
||||
fp16=False,
|
||||
n_gpu=2):
|
||||
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
origin_repo_id = repo_id.replace("-4bit", "")
|
||||
if origin_repo_id in CHATGLM_IDS:
|
||||
if "4bit" in repo_id:
|
||||
model = AutoModel.load_low_bit(model_path, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
else:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, cpu_embedding=cpu_embedding)
|
||||
elif origin_repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
if "4bit" in repo_id:
|
||||
model = AutoModelForCausalLM.load_low_bit(model_path, optimize_model=True,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
else:
|
||||
if 'starcoder' in repo_id:
|
||||
# Load starcoder-15.5b model in bf16 format to avoid CPU OOM.
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, torch_dtype=torch.bfloat16).eval()
|
||||
# Convert the low-bit model back to fp32 for performance considerations.
|
||||
model = model.float()
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if fp16:
|
||||
model = model.half()
|
||||
print("Convert model to half precision")
|
||||
|
||||
end = time.perf_counter()
|
||||
load_time = end - st
|
||||
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))
|
||||
|
||||
model_layers = ['model.embed_tokens']
|
||||
for i in range(model.config.num_hidden_layers):
|
||||
model_layers.append(f'model.layers.{i}')
|
||||
model_layers = model_layers + ['model.norm', 'lm_head']
|
||||
|
||||
device_map = {}
|
||||
split_len = len(model_layers) // n_gpu
|
||||
for i in range(n_gpu):
|
||||
device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * i: split_len * (i + 1)]})
|
||||
if i == n_gpu - 1:
|
||||
device_map.update({key: f'xpu:{i}' for key in model_layers[split_len * (i + 1): ]})
|
||||
print(f">> device map: {device_map}")
|
||||
|
||||
from accelerate import dispatch_model
|
||||
model = dispatch_model(
|
||||
model,
|
||||
device_map=device_map,
|
||||
offload_dir=None,
|
||||
skip_keys=["past_key_value", "past_key_values"],
|
||||
)
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
# As different tokenizer has different encodings,
|
||||
# in_len.txt maybe shorter than we need,
|
||||
# use much longer context to make sure input length
|
||||
test_length = min(in_len*2, 8192)
|
||||
while test_length not in [32, 256, 1024, 2048, 8192]:
|
||||
test_length = test_length * 2
|
||||
input_str = open(f"prompt/{test_length}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu:0')
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
|
||||
num_beams=num_beams)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
actual_out_len = output_ids.shape[1] - actual_in_len
|
||||
print(output[0])
|
||||
torch.xpu.empty_cache()
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
|
||||
actual_in_len, actual_out_len, load_time, model.peak_memory, fp16])
|
||||
del model
|
||||
torch.xpu.empty_cache()
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from omegaconf import OmegaConf
|
||||
conf = OmegaConf.load(f'{current_dir}/config.yaml')
|
||||
|
|
@ -1698,9 +1820,9 @@ if __name__ == '__main__':
|
|||
if model_id_input in excludes or model_id_input_batch_size in excludes:
|
||||
in_out_pairs.remove(in_out)
|
||||
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
||||
conf['low_bit'], conf['cpu_embedding'], conf['batch_size'], streaming)
|
||||
conf['low_bit'], conf['cpu_embedding'], conf['batch_size'], streaming, conf['use_fp16_torch_dtype'], conf['n_gpu'])
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming'])
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
|
||||
df.to_csv(csv_name)
|
||||
results = []
|
||||
|
|
|
|||
Loading…
Reference in a new issue