use fused qkv forward in qwen2 (#10185)
* use fused qkv forward in qwen2 * support both * fix style * fix rope * remove pring * fix style * clean up
This commit is contained in:
parent
509e206de0
commit
f4d7dbcde2
3 changed files with 94 additions and 64 deletions
|
|
@ -323,7 +323,8 @@ def llama_attention_forward_4_31_quantized(
|
|||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
0,
|
||||
self.head_dim)
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
|
|
@ -511,7 +512,8 @@ def llama_attention_forward_4_31_original(
|
|||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
|
||||
else:
|
||||
|
|
@ -762,7 +764,9 @@ def llama_attention_selective_batching_forward_4_31(
|
|||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,
|
||||
)
|
||||
kv_seq_len += 1
|
||||
else:
|
||||
if self.config.pretraining_tp > 1:
|
||||
|
|
@ -942,7 +946,8 @@ def llama_attention_forward_4_36(
|
|||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
|
|
|
|||
|
|
@ -171,7 +171,8 @@ def mixtral_attention_forward(
|
|||
self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype,
|
||||
kv_seq_len,
|
||||
self.head_dim)
|
||||
self.head_dim,
|
||||
self.rotary_emb.base,)
|
||||
kv_seq_len += 1
|
||||
# update past_key_value's seem_tokens and kv caches.
|
||||
if self.layer_idx == 0:
|
||||
|
|
|
|||
|
|
@ -223,6 +223,9 @@ def qwen2_attention_forward_quantized(
|
|||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||
SYM_INT4 = ggml_tensor_qtype["sym_int4"]
|
||||
FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
|
||||
|
||||
|
||||
def qwen2_attention_forward_origin(
|
||||
|
|
@ -247,72 +250,93 @@ def qwen2_attention_forward_origin(
|
|||
device = hidden_states.device
|
||||
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = \
|
||||
key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = \
|
||||
value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(
|
||||
False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} "
|
||||
"for auto-regressive decoding with k/v caching, "
|
||||
"please make sure to initialize the attention class with a layer index."
|
||||
)
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
if use_fuse_rope:
|
||||
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
|
||||
sin, cos, "qwen2",
|
||||
position_ids)
|
||||
else:
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids)
|
||||
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
qtype = getattr(self.q_proj, "qtype", None)
|
||||
qtype_check = qtype in [SYM_INT4, FP8E5]
|
||||
decoding_fast_path = (qtype_check and use_fuse_rope
|
||||
and enough_kv_room and bsz * q_len == 1)
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
import linear_q4_0
|
||||
args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
|
||||
self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
|
||||
cache_v, self.q_proj.weight.qtype, kv_seq_len, self.head_dim, self.rotary_emb.base]
|
||||
query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
|
||||
kv_seq_len += 1
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens += key_states.shape[-2]
|
||||
past_key_value.seen_tokens = kv_seq_len
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = \
|
||||
key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = \
|
||||
value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
if self.layer_idx is None:
|
||||
invalidInputError(
|
||||
False,
|
||||
"The cache structure has changed since version v4.36. "
|
||||
f"If you are using {self.__class__.__name__} "
|
||||
"for auto-regressive decoding with k/v caching, "
|
||||
"please make sure to initialize the attention class with a layer index."
|
||||
)
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
if use_fuse_rope:
|
||||
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
|
||||
sin, cos, "qwen2",
|
||||
position_ids)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids)
|
||||
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
if past_key_value is not None:
|
||||
# update the number of seen tokens
|
||||
if self.layer_idx == 0:
|
||||
past_key_value.seen_tokens += key_states.shape[-2]
|
||||
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||
past_key_value.key_cache.append(key_states)
|
||||
past_key_value.value_cache.append(value_states)
|
||||
else:
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k,
|
||||
cache_v,
|
||||
key_states,
|
||||
value_states)
|
||||
if not enough_kv_room:
|
||||
# allocate new
|
||||
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
new_c_k[:] = cache_k
|
||||
new_c_v[:] = cache_v
|
||||
cache_k = new_c_k
|
||||
cache_v = new_c_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k,
|
||||
cache_v,
|
||||
key_states,
|
||||
value_states)
|
||||
|
||||
# update past_key_value
|
||||
past_key_value.key_cache[self.layer_idx] = key_states
|
||||
past_key_value.value_cache[self.layer_idx] = value_states
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
|
|
|
|||
Loading…
Reference in a new issue