use fused qkv forward in qwen2 (#10185)
* use fused qkv forward in qwen2 * support both * fix style * fix rope * remove pring * fix style * clean up
This commit is contained in:
		
							parent
							
								
									509e206de0
								
							
						
					
					
						commit
						f4d7dbcde2
					
				
					 3 changed files with 94 additions and 64 deletions
				
			
		| 
						 | 
				
			
			@ -323,7 +323,8 @@ def llama_attention_forward_4_31_quantized(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         0,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			@ -511,7 +512,8 @@ def llama_attention_forward_4_31_original(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
| 
						 | 
				
			
			@ -762,7 +764,9 @@ def llama_attention_selective_batching_forward_4_31(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,
 | 
			
		||||
                                                                         )
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
    else:
 | 
			
		||||
        if self.config.pretraining_tp > 1:
 | 
			
		||||
| 
						 | 
				
			
			@ -942,7 +946,8 @@ def llama_attention_forward_4_36(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -171,7 +171,8 @@ def mixtral_attention_forward(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -223,6 +223,9 @@ def qwen2_attention_forward_quantized(
 | 
			
		|||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
SYM_INT4 = ggml_tensor_qtype["sym_int4"]
 | 
			
		||||
FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen2_attention_forward_origin(
 | 
			
		||||
| 
						 | 
				
			
			@ -247,6 +250,27 @@ def qwen2_attention_forward_origin(
 | 
			
		|||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
			
		||||
    qtype = getattr(self.q_proj, "qtype", None)
 | 
			
		||||
    qtype_check = qtype in [SYM_INT4, FP8E5]
 | 
			
		||||
    decoding_fast_path = (qtype_check and use_fuse_rope
 | 
			
		||||
                          and enough_kv_room and bsz * q_len == 1)
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
        kv_seq_len = cache_k.shape[-2]
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
			
		||||
                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
			
		||||
                cache_v, self.q_proj.weight.qtype, kv_seq_len, self.head_dim, self.rotary_emb.base]
 | 
			
		||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
            past_key_value.seen_tokens = kv_seq_len
 | 
			
		||||
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue