use fused qkv forward in qwen2 (#10185)
* use fused qkv forward in qwen2 * support both * fix style * fix rope * remove pring * fix style * clean up
This commit is contained in:
		
							parent
							
								
									509e206de0
								
							
						
					
					
						commit
						f4d7dbcde2
					
				
					 3 changed files with 94 additions and 64 deletions
				
			
		| 
						 | 
				
			
			@ -323,7 +323,8 @@ def llama_attention_forward_4_31_quantized(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         0,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
| 
						 | 
				
			
			@ -511,7 +512,8 @@ def llama_attention_forward_4_31_original(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
| 
						 | 
				
			
			@ -762,7 +764,9 @@ def llama_attention_selective_batching_forward_4_31(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,
 | 
			
		||||
                                                                         )
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
    else:
 | 
			
		||||
        if self.config.pretraining_tp > 1:
 | 
			
		||||
| 
						 | 
				
			
			@ -942,7 +946,8 @@ def llama_attention_forward_4_36(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -171,7 +171,8 @@ def mixtral_attention_forward(
 | 
			
		|||
                                                                         self.q_proj.weight.qtype,
 | 
			
		||||
                                                                         self.v_proj.weight.qtype,
 | 
			
		||||
                                                                         kv_seq_len,
 | 
			
		||||
                                                                         self.head_dim)
 | 
			
		||||
                                                                         self.head_dim,
 | 
			
		||||
                                                                         self.rotary_emb.base,)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        # update past_key_value's seem_tokens and kv caches.
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -223,6 +223,9 @@ def qwen2_attention_forward_quantized(
 | 
			
		|||
        attn_weights = None
 | 
			
		||||
 | 
			
		||||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
 | 
			
		||||
SYM_INT4 = ggml_tensor_qtype["sym_int4"]
 | 
			
		||||
FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen2_attention_forward_origin(
 | 
			
		||||
| 
						 | 
				
			
			@ -247,72 +250,93 @@ def qwen2_attention_forward_origin(
 | 
			
		|||
    device = hidden_states.device
 | 
			
		||||
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
			
		||||
 | 
			
		||||
    query_states = self.q_proj(hidden_states)
 | 
			
		||||
    key_states = self.k_proj(hidden_states)
 | 
			
		||||
    value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    key_states = \
 | 
			
		||||
        key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
    value_states = \
 | 
			
		||||
        value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.shape[-2]
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        if self.layer_idx is None:
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                "The cache structure has changed since version v4.36. "
 | 
			
		||||
                f"If you are using {self.__class__.__name__} "
 | 
			
		||||
                "for auto-regressive decoding with k/v caching, "
 | 
			
		||||
                "please make sure to initialize the attention class with a layer index."
 | 
			
		||||
            )
 | 
			
		||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
    if use_fuse_rope:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
			
		||||
                                                                       sin, cos, "qwen2",
 | 
			
		||||
                                                                       position_ids)
 | 
			
		||||
    else:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                        cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # update the number of seen tokens
 | 
			
		||||
    qtype = getattr(self.q_proj, "qtype", None)
 | 
			
		||||
    qtype_check = qtype in [SYM_INT4, FP8E5]
 | 
			
		||||
    decoding_fast_path = (qtype_check and use_fuse_rope
 | 
			
		||||
                          and enough_kv_room and bsz * q_len == 1)
 | 
			
		||||
    if decoding_fast_path:
 | 
			
		||||
        hidden_states = hidden_states.view(1, -1)
 | 
			
		||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
        kv_seq_len = cache_k.shape[-2]
 | 
			
		||||
        import linear_q4_0
 | 
			
		||||
        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
			
		||||
                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
			
		||||
                cache_v, self.q_proj.weight.qtype, kv_seq_len, self.head_dim, self.rotary_emb.base]
 | 
			
		||||
        query_states, key_states, value_states = linear_q4_0.forward_qkv_bias(*args)
 | 
			
		||||
        kv_seq_len += 1
 | 
			
		||||
        if self.layer_idx == 0:
 | 
			
		||||
            past_key_value.seen_tokens += key_states.shape[-2]
 | 
			
		||||
            past_key_value.seen_tokens = kv_seq_len
 | 
			
		||||
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
 | 
			
		||||
        if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
            past_key_value.key_cache.append(key_states)
 | 
			
		||||
            past_key_value.value_cache.append(value_states)
 | 
			
		||||
    else:
 | 
			
		||||
 | 
			
		||||
        query_states = self.q_proj(hidden_states)
 | 
			
		||||
        key_states = self.k_proj(hidden_states)
 | 
			
		||||
        value_states = self.v_proj(hidden_states)
 | 
			
		||||
 | 
			
		||||
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        key_states = \
 | 
			
		||||
            key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
        value_states = \
 | 
			
		||||
            value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        kv_seq_len = key_states.shape[-2]
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            if self.layer_idx is None:
 | 
			
		||||
                invalidInputError(
 | 
			
		||||
                    False,
 | 
			
		||||
                    "The cache structure has changed since version v4.36. "
 | 
			
		||||
                    f"If you are using {self.__class__.__name__} "
 | 
			
		||||
                    "for auto-regressive decoding with k/v caching, "
 | 
			
		||||
                    "please make sure to initialize the attention class with a layer index."
 | 
			
		||||
                )
 | 
			
		||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
			
		||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
			
		||||
        if use_fuse_rope:
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
			
		||||
                                                                           sin, cos, "qwen2",
 | 
			
		||||
                                                                           position_ids)
 | 
			
		||||
        else:
 | 
			
		||||
            cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
            cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
			
		||||
                                                            cos, sin, position_ids)
 | 
			
		||||
 | 
			
		||||
            if not enough_kv_room:
 | 
			
		||||
                # allocate new
 | 
			
		||||
                new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                   self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                   self.head_dim,
 | 
			
		||||
                                                   cache_k.size(2),
 | 
			
		||||
                                                   kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                   dtype=cache_k.dtype,
 | 
			
		||||
                                                   device=device)
 | 
			
		||||
        if past_key_value is not None:
 | 
			
		||||
            # update the number of seen tokens
 | 
			
		||||
            if self.layer_idx == 0:
 | 
			
		||||
                past_key_value.seen_tokens += key_states.shape[-2]
 | 
			
		||||
 | 
			
		||||
                new_c_k[:] = cache_k
 | 
			
		||||
                new_c_v[:] = cache_v
 | 
			
		||||
                cache_k = new_c_k
 | 
			
		||||
                cache_v = new_c_v
 | 
			
		||||
            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
			
		||||
                past_key_value.key_cache.append(key_states)
 | 
			
		||||
                past_key_value.value_cache.append(value_states)
 | 
			
		||||
            else:
 | 
			
		||||
                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
			
		||||
                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
			
		||||
 | 
			
		||||
            key_states, value_states = append_kv_cache(cache_k,
 | 
			
		||||
                                                       cache_v,
 | 
			
		||||
                                                       key_states,
 | 
			
		||||
                                                       value_states)
 | 
			
		||||
                if not enough_kv_room:
 | 
			
		||||
                    # allocate new
 | 
			
		||||
                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_key_value_heads,  # Support GQA
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.dtype,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
 | 
			
		||||
            # update past_key_value
 | 
			
		||||
            past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
            past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
                    new_c_k[:] = cache_k
 | 
			
		||||
                    new_c_v[:] = cache_v
 | 
			
		||||
                    cache_k = new_c_k
 | 
			
		||||
                    cache_v = new_c_v
 | 
			
		||||
 | 
			
		||||
                key_states, value_states = append_kv_cache(cache_k,
 | 
			
		||||
                                                           cache_v,
 | 
			
		||||
                                                           key_states,
 | 
			
		||||
                                                           value_states)
 | 
			
		||||
 | 
			
		||||
                # update past_key_value
 | 
			
		||||
                past_key_value.key_cache[self.layer_idx] = key_states
 | 
			
		||||
                past_key_value.value_cache[self.layer_idx] = value_states
 | 
			
		||||
 | 
			
		||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue