diff --git a/README.md b/README.md index 07bc914f..ab44c7a3 100644 --- a/README.md +++ b/README.md @@ -184,6 +184,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | Deepseek | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deepseek) | | StableLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/stablelm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/stablelm) | | CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegemma) | +| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere) | ## Get Support - Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) diff --git a/docs/readthedocs/source/index.rst b/docs/readthedocs/source/index.rst index 2a261ce4..53b33be9 100644 --- a/docs/readthedocs/source/index.rst +++ b/docs/readthedocs/source/index.rst @@ -587,6 +587,13 @@ Verified Models link + + Command-R/cohere + + link + + link + diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md new file mode 100644 index 00000000..d104c84d --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md @@ -0,0 +1,64 @@ +# CoHere/command-r +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on cohere models. For illustration purposes, we utilize the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) as reference model. + +## 0. Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a cohere model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option +pip install tansformers==4.40.0 +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the cohere model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'CohereForAI/c4ai-command-r-v01'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the cohere model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init -t + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) +```log +Inference time: xxxxx s +-------------------- Prompt -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> + +-------------------- Output -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +Artificial Intelligence, or AI, is a fascinating field of study that aims to create intelligent machines that can mimic human cognitive functions and perform complex tasks. AI strives to +``` diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/generate.py b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/generate.py new file mode 100644 index 00000000..d215b00b --- /dev/null +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/generate.py @@ -0,0 +1,69 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# Refer to https://huggingface.co/CohereForAI/c4ai-command-r-v01 +COHERE_PROMPT_FORMAT = """ +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for cohere model') + parser.add_argument('--repo-id-or-model-path', type=str, default="CohereForAI/c4ai-command-r-v01", + help='The huggingface repo id for the cohere to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = COHERE_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md b/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md new file mode 100644 index 00000000..d104c84d --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md @@ -0,0 +1,64 @@ +# CoHere/command-r +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on cohere models. For illustration purposes, we utilize the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) as reference model. + +## 0. Requirements +To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a cohere model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. +### 1. Install +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm + +pip install --pre --upgrade ipex-llm[all] # install ipex-llm with 'all' option +pip install tansformers==4.40.0 +``` + +### 2. Run +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the cohere model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'CohereForAI/c4ai-command-r-v01'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. +> +> Please select the appropriate size of the cohere model based on the capabilities of your machine. + +#### 2.1 Client +On client Windows machine, it is recommended to run directly with full utilization of all cores: +```powershell +python ./generate.py +``` + +#### 2.2 Server +For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. + +E.g. on Linux, +```bash +# set IPEX-LLM env variables +source ipex-llm-init -t + +# e.g. for a server with 48 cores per socket +export OMP_NUM_THREADS=48 +numactl -C 0-47 -m 0 python ./generate.py +``` + +#### 2.3 Sample Output +#### [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) +```log +Inference time: xxxxx s +-------------------- Prompt -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> + +-------------------- Output -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +Artificial Intelligence, or AI, is a fascinating field of study that aims to create intelligent machines that can mimic human cognitive functions and perform complex tasks. AI strives to +``` diff --git a/python/llm/example/CPU/PyTorch-Models/Model/cohere/generate.py b/python/llm/example/CPU/PyTorch-Models/Model/cohere/generate.py new file mode 100644 index 00000000..d215b00b --- /dev/null +++ b/python/llm/example/CPU/PyTorch-Models/Model/cohere/generate.py @@ -0,0 +1,69 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# Refer to https://huggingface.co/CohereForAI/c4ai-command-r-v01 +COHERE_PROMPT_FORMAT = """ +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for cohere model') + parser.add_argument('--repo-id-or-model-path', type=str, default="CohereForAI/c4ai-command-r-v01", + help='The huggingface repo id for the cohere to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True) + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = COHERE_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt") + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + end = time.time() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere/README.md new file mode 100644 index 00000000..8ab61799 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere/README.md @@ -0,0 +1,101 @@ +# CoHere/command-r +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on cohere models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) as a reference model. +> **Note**: Because the size of this cohere model is 35B, even running low_bit `sym_int4` still requires about 17.5GB. So currently it can only be run on MAX GPU, or run with [Pipeline-Parallel-Inference](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Inference) on multiple Arc GPUs. +> +> Please select the appropriate size of the cohere model based on the capabilities of your machine. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a cohere model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +pip install tansformers==4.40.0 +conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm +# below command will use pip to install the Intel oneAPI Base Toolkit 2024.0 +pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0 + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +pip install tansformers==4.40.0 +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arcâ„¢ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the cohere model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'CohereForAI/c4ai-command-r-v01'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) +```log +Inference time: xxxxx s +-------------------- Prompt -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> + +-------------------- Output -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +Artificial Intelligence Quora User, + +Artificial Intelligence (AI) is the simulation of human intelligence in machines, typically by machines, that have become a very complex +``` diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere/generate.py new file mode 100644 index 00000000..69c74ad4 --- /dev/null +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere/generate.py @@ -0,0 +1,81 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# Refer to https://huggingface.co/CohereForAI/c4ai-command-r-v01 +COHERE_PROMPT_FORMAT = """ +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for cohere model') + parser.add_argument('--repo-id-or-model-path', type=str, default="CohereForAI/c4ai-command-r-v01", + help='The huggingface repo id for the cohere to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + model = model.half().to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = COHERE_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + # ipex_llm model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + + # start inference + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md b/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md new file mode 100644 index 00000000..8ab61799 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md @@ -0,0 +1,101 @@ +# CoHere/command-r +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on cohere models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) as a reference model. +> **Note**: Because the size of this cohere model is 35B, even running low_bit `sym_int4` still requires about 17.5GB. So currently it can only be run on MAX GPU, or run with [Pipeline-Parallel-Inference](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/Pipeline-Parallel-Inference) on multiple Arc GPUs. +> +> Please select the appropriate size of the cohere model based on the capabilities of your machine. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a cohere model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +pip install tansformers==4.40.0 +conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm +# below command will use pip to install the Intel oneAPI Base Toolkit 2024.0 +pip install dpcpp-cpp-rt==2024.0.2 mkl-dpcpp==2024.0.0 onednn==2024.0.0 + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ +pip install tansformers==4.40.0 +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arcâ„¢ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +### 4. Running examples + +``` +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the cohere model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'CohereForAI/c4ai-command-r-v01'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. + +#### Sample Output +#### [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) +```log +Inference time: xxxxx s +-------------------- Prompt -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> + +-------------------- Output -------------------- + +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>What is AI?<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +Artificial Intelligence Quora User, + +Artificial Intelligence (AI) is the simulation of human intelligence in machines, typically by machines, that have become a very complex +``` diff --git a/python/llm/example/GPU/PyTorch-Models/Model/cohere/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/cohere/generate.py new file mode 100644 index 00000000..69c74ad4 --- /dev/null +++ b/python/llm/example/GPU/PyTorch-Models/Model/cohere/generate.py @@ -0,0 +1,81 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse + +from ipex_llm.transformers import AutoModelForCausalLM +from transformers import AutoTokenizer + +# you could tune the prompt based on your own model, +# Refer to https://huggingface.co/CohereForAI/c4ai-command-r-v01 +COHERE_PROMPT_FORMAT = """ +<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{prompt}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> +""" + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for cohere model') + parser.add_argument('--repo-id-or-model-path', type=str, default="CohereForAI/c4ai-command-r-v01", + help='The huggingface repo id for the cohere to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="What is AI?", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + # Load model in 4 bit, + # which convert the relevant layers in the model into INT4 format + # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. + # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. + model = AutoModelForCausalLM.from_pretrained(model_path, + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + use_cache=True) + model = model.half().to('xpu') + + # Load tokenizer + tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) + + # Generate predicted tokens + with torch.inference_mode(): + prompt = COHERE_PROMPT_FORMAT.format(prompt=args.prompt) + input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') + # ipex_llm model needs a warmup, then inference time can be accurate + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + + # start inference + st = time.time() + # if your selected model is capable of utilizing previous key/value attentions + # to enhance decoding speed, but has `"use_cache": false` in its model config, + # it is important to set `use_cache=True` explicitly in the `generate` function + # to obtain optimal performance with IPEX-LLM INT4 optimizations + output = model.generate(input_ids, + max_new_tokens=args.n_predict) + torch.xpu.synchronize() + end = time.time() + output = output.cpu() + output_str = tokenizer.decode(output[0], skip_special_tokens=True) + print(f'Inference time: {end-st} s') + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str)