support internvl2-4b (#11718)

This commit is contained in:
Yishuo Wang 2024-08-06 13:36:32 +08:00 committed by GitHub
parent 7f241133da
commit f44b732aa8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 177 additions and 0 deletions

View file

@ -1256,6 +1256,18 @@ def _optimize_post(model, lightweight_bmm=False):
)
convert_forward(model, module.InternLM2Model, internlm_xcomposser2_model_forward)
model.chat = MethodType(internlm_xcomposser2_chat, model)
elif model.config.model_type == "internvl_chat":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.internvl import internvl_chat
from ipex_llm.transformers.models.internvl import internvl_batch_chat
model.get_conv_template = module.get_conv_template
model.chat = MethodType(internvl_chat, model)
model.batch_chat = MethodType(internvl_batch_chat, model)
if model.vision_model.__class__.__name__ == "InternVisionModel":
from ipex_llm.transformers.models.internvl import _get_pos_embed
vision_embedding = model.vision_model.embeddings
vision_embedding._get_pos_embed = MethodType(_get_pos_embed, vision_embedding)
elif model.config.model_type == "qwen":
if hasattr(model.config, "visual"):
# for Qwen-VL-Chat

View file

@ -0,0 +1,165 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_intern_vit.py
# which is licensed under MIT:
#
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
#
import torch
from ipex_llm.utils.common.log4Error import invalidInputError
def _get_pos_embed(self, pos_embed, H, W):
target_dtype = pos_embed.dtype
device = pos_embed.device
pos_embed = pos_embed.float().reshape(
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1
).permute(0, 3, 1, 2)
# ipex-llm change start: call interpolate on CPU to fix bug
pos_embed = torch.nn.functional.interpolate(
pos_embed.to('cpu'), size=(H, W), mode='bicubic', align_corners=False
).reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype).to(device)
# ipex-llm changes end
return pos_embed
def internvl_chat(self, tokenizer, pixel_values, question, generation_config,
history=None, return_history=False, num_patches_list=None,
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
invalidInputError(pixel_values is None or len(pixel_values) == sum(num_patches_list),
"wrong num_patches_list length")
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
template = self.get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
for num_patches in num_patches_list:
image_tokens = (IMG_START_TOKEN
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
+ IMG_END_TOKEN)
query = query.replace('<image>', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
# ipex-llm changes start: move input_ids and attention_mask to xpu
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=self.dtype, device=self.device)
# ipex-llm changes end
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep)[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
def internvl_batch_chat(self, tokenizer, pixel_values, questions, generation_config,
num_patches_list=None, history=None, return_history=False,
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
invalidInputError(history is None and not return_history,
'Now multi-turn chat is not supported in batch_chat.')
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
template = self.get_conv_template(self.template)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = (IMG_START_TOKEN
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
+ IMG_END_TOKEN)
query = query.replace('<image>', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
# ipex-llm changes start: move input_ids and attention_mask to xpu
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=self.dtype, device=self.device)
# ipex-llm changes end
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep)[0].strip() for response in responses]
return responses