Support minicpm for NPU C++ (#12434)
* support minicpm-1b * update * tune fused_layers * update readme.md
This commit is contained in:
parent
0819fad34e
commit
f41405368a
4 changed files with 208 additions and 24 deletions
|
|
@ -9,6 +9,7 @@ In this directory, you will find a C++ example on how to run LLM models on Intel
|
|||
| Qwen2.5 | [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) |
|
||||
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
|
||||
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
||||
| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
|
||||
|
||||
## 0. Requirements
|
||||
To run this C++ example with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
||||
|
|
|
|||
|
|
@ -493,3 +493,36 @@ def convert_llm_for_deploy(model: torch.nn.Module,
|
|||
# save blob of lmhead and bin of embedding
|
||||
convert_lm_head_and_embedding(model, n_splits_linear,
|
||||
save_directory, weight_dir, True)
|
||||
elif model.config.model_type == "minicpm":
|
||||
layernorm_const = True
|
||||
fused_layers = 4
|
||||
update_dict = {"kv_len": kv_len,
|
||||
"num_head": model.model.layers[0].self_attn.num_heads,
|
||||
"head_dim": model.model.layers[0].self_attn.head_dim,
|
||||
"transpose_value_cache": transpose_value_cache,
|
||||
"max_prompt_len": max_prompt_len,
|
||||
"layernorm_const": layernorm_const,
|
||||
"group_size": group_size,
|
||||
"fused_layers": fused_layers,
|
||||
"qkv_bias": False,
|
||||
"use_prefill_sdp": False,
|
||||
"weight_num": 7,
|
||||
"weight_idx": 5,
|
||||
"model_type": "minicpm",
|
||||
"embedding_post": True}
|
||||
model.config.update(update_dict)
|
||||
model.config.save_pretrained(save_directory)
|
||||
|
||||
from .minicpm import convert_minicpm_layer, convert_fused_minicpm_layer
|
||||
from .minicpm import convert_lm_head_and_embedding
|
||||
# save fused_layers blobs of fused decoder layers
|
||||
convert_fused_minicpm_layer(model, fused_layers, n_splits_linear, n_splits_down_proj,
|
||||
save_directory, weight_dir, transpose_value_cache, kv_len,
|
||||
group_size, layernorm_const, "decode")
|
||||
# save blob of single prefill layer
|
||||
convert_minicpm_layer(model, 0, n_splits_linear, n_splits_down_proj,
|
||||
save_directory, weight_dir, transpose_value_cache, max_prompt_len,
|
||||
group_size, layernorm_const, "prefill")
|
||||
# save blob of lmhead and bin of embedding
|
||||
convert_lm_head_and_embedding(model, n_splits_linear,
|
||||
save_directory, weight_dir, True, max_prompt_len)
|
||||
|
|
|
|||
|
|
@ -147,10 +147,11 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
|||
)
|
||||
else:
|
||||
# llama-3.2-3B & llama-3.2-1B
|
||||
embedding_layer = model.model.embed_tokens
|
||||
new_embedding = Llama32Embedding(
|
||||
vocab_size=model.config.vocab_size,
|
||||
embedding_dim=model.config.hidden_size,
|
||||
embedding_weight=model.model.embed_tokens.weight.to(torch.float16).detach().numpy(),
|
||||
embedding_weight=embedding_layer.weight.to(torch.float16).detach().numpy(),
|
||||
padding_idx=model.config.pad_token_id,
|
||||
inv_freq=model.model.rotary_emb.inv_freq.to(torch.float16),
|
||||
attention_scaling=model.model.rotary_emb.attention_scaling,
|
||||
|
|
|
|||
|
|
@ -67,6 +67,29 @@ class MiniCPMEmbedding(NNFactory):
|
|||
self.compile()
|
||||
|
||||
|
||||
class MiniCPMPostEmbedding(NNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
embedding_dim,
|
||||
dtype, # fp16
|
||||
scale_emb,
|
||||
device: str = "NPU",
|
||||
):
|
||||
super().__init__(False, device)
|
||||
self.embedding_dim = embedding_dim
|
||||
self.dtype = dtype
|
||||
|
||||
input = self.parameter((1, input_size, embedding_dim), dtype=dtype)
|
||||
res = input * scale_emb
|
||||
|
||||
# define outputs
|
||||
res = self.convert_to_fp16(res)
|
||||
|
||||
print("start compiling")
|
||||
self.compile()
|
||||
|
||||
|
||||
class MiniCPMLMHead(LLMBaseNNFactory):
|
||||
def __init__(
|
||||
self,
|
||||
|
|
@ -134,7 +157,8 @@ class MiniCPMLMHead(LLMBaseNNFactory):
|
|||
self.compile()
|
||||
|
||||
|
||||
def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
|
||||
def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
|
||||
convert_model=False, max_prompt_len=1):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
|
|
@ -180,7 +204,8 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
|
|||
vocab_size=vocab_size,
|
||||
n_splits=n_splits_linear
|
||||
)
|
||||
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir)
|
||||
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir,
|
||||
True, True)
|
||||
|
||||
# save weights bins files
|
||||
if n_splits_linear == 1:
|
||||
|
|
@ -209,14 +234,31 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
|
|||
dtype=np.float16,
|
||||
scale_emb=model.config.scale_emb,
|
||||
)
|
||||
first_blob_path = update_names_of_IR_and_export_blob(new_embedding, "embedding",
|
||||
temp_dir)
|
||||
if convert_model:
|
||||
bin_file = os.path.join(weight_dir, f"model_embedding_input_0.bin")
|
||||
embedding_layer.weight.to(torch.float16).detach().numpy().tofile(bin_file)
|
||||
first_blob_path = None
|
||||
# save embedding post module
|
||||
embedding_post = MiniCPMPostEmbedding(1, model.config.hidden_size,
|
||||
dtype=np.float16,
|
||||
scale_emb=model.config.scale_emb)
|
||||
update_names_of_IR_and_export_blob(embedding_post, "embedding_post",
|
||||
temp_dir, True, False)
|
||||
embedding_post_prefill = MiniCPMPostEmbedding(max_prompt_len, model.config.hidden_size,
|
||||
dtype=np.float16,
|
||||
scale_emb=model.config.scale_emb)
|
||||
update_names_of_IR_and_export_blob(embedding_post_prefill,
|
||||
"embedding_post_prefill",
|
||||
temp_dir, True, False)
|
||||
else:
|
||||
first_blob_path = update_names_of_IR_and_export_blob(new_embedding, "embedding",
|
||||
temp_dir, True, False)
|
||||
return first_blob_path, last_blob_path
|
||||
|
||||
|
||||
def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
||||
temp_dir, weight_dir, transpose_value_cache, kv_len, group_size,
|
||||
layernorm_const):
|
||||
layernorm_const, mode="decode"):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
|
|
@ -252,8 +294,16 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
|||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
if mode == "decode":
|
||||
input_len = 1
|
||||
decoder_name = f"decoder_layer_{layer_idx}"
|
||||
else:
|
||||
input_len = kv_len
|
||||
decoder_name = "decoder_layer_prefill"
|
||||
layernorm_const = False
|
||||
|
||||
single_decoder = LowBitMinicpmMultiDecoderlayer(
|
||||
[1, 1, num_heads * head_dim],
|
||||
[1, input_len, num_heads * head_dim],
|
||||
input_layernorm_weights=[layer_norm_0] if layernorm_const else None,
|
||||
post_attn_layernorm_weights=[layer_norm_1] if layernorm_const else None,
|
||||
cached_cos=cached_cos,
|
||||
|
|
@ -266,7 +316,7 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
|||
intermediate_size=intermediate_size,
|
||||
scale_depth=scale_depth,
|
||||
num_hidden_layers=num_hidden_layers,
|
||||
mode="decode",
|
||||
mode=mode,
|
||||
transpose_value=transpose_value_cache,
|
||||
dtype=np_dtype,
|
||||
n_splits_linear=n_splits_linear,
|
||||
|
|
@ -274,20 +324,119 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
|
|||
group_size=group_size
|
||||
)
|
||||
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
|
||||
f"decoder_layer_{layer_idx}",
|
||||
temp_dir)
|
||||
decoder_name,
|
||||
temp_dir,
|
||||
True, True)
|
||||
|
||||
if layernorm_const:
|
||||
st_idx = 5
|
||||
else:
|
||||
input_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_3.bin")
|
||||
post_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_4.bin")
|
||||
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
|
||||
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
||||
st_idx = 7
|
||||
for idx, (weight, scale) in enumerate(weights):
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
||||
weight.numpy().tofile(bin_file)
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
||||
scale.numpy().tofile(bin_file)
|
||||
del single_decoder
|
||||
if mode == "decode":
|
||||
if layernorm_const:
|
||||
st_idx = 5
|
||||
else:
|
||||
input_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_3.bin")
|
||||
post_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_4.bin")
|
||||
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
|
||||
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
||||
st_idx = 7
|
||||
for idx, (weight, scale) in enumerate(weights):
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
||||
weight.numpy().tofile(bin_file)
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
||||
scale.numpy().tofile(bin_file)
|
||||
del single_decoder
|
||||
|
||||
|
||||
def convert_fused_minicpm_layer(model, fused_layers, n_splits_linear, n_splits_down_proj,
|
||||
save_dir, weight_dir, transpose_value_cache, kv_len, group_size,
|
||||
layernorm_const, mode="decode"):
|
||||
num_heads = model.model.layers[0].self_attn.num_heads
|
||||
num_key_value_heads = model.model.layers[0].self_attn.num_key_value_heads
|
||||
head_dim = model.model.layers[0].self_attn.head_dim
|
||||
intermediate_size = model.config.intermediate_size
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
num_hidden_layers = model.config.num_hidden_layers
|
||||
scale_depth = model.model.config.scale_depth
|
||||
layer_num = len(model.model.layers)
|
||||
fused_layer_num = layer_num // fused_layers
|
||||
|
||||
from ipex_llm.transformers.npu_models.minicpm_mp import LowBitMinicpmMultiDecoderlayer
|
||||
for i in range(fused_layers):
|
||||
layer_start = i * fused_layer_num
|
||||
layer_end = min((i + 1) * fused_layer_num, layer_num)
|
||||
layer_weights = []
|
||||
input_layer_norm_weights = []
|
||||
post_attn_layernorm_weights = []
|
||||
layer_indexs = range(layer_start, layer_end)
|
||||
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
||||
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
||||
for layer_idx in layer_indexs:
|
||||
curr_layer = model.model.layers[layer_idx]
|
||||
attn_layer = curr_layer.self_attn
|
||||
mlp_layer = curr_layer.mlp
|
||||
|
||||
weights = []
|
||||
for layer_list in [attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
|
||||
attn_layer.v_proj_dq_list, attn_layer.o_proj_dq_list,
|
||||
mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list,
|
||||
mlp_layer.down_proj_dq_list]:
|
||||
l_weights = []
|
||||
scales = []
|
||||
for l in layer_list:
|
||||
l_weights.append(l.weight)
|
||||
scales.append(l.scale)
|
||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||
|
||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
|
||||
layer_norm_0 = curr_layer.input_layernorm.weight.to(torch.float16)
|
||||
layer_norm_1 = curr_layer.post_attention_layernorm.weight.to(torch.float16)
|
||||
|
||||
layer_weights.extend(weights)
|
||||
input_layer_norm_weights.append(layer_norm_0)
|
||||
post_attn_layernorm_weights.append(layer_norm_1)
|
||||
|
||||
# save weight
|
||||
input_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_3.bin")
|
||||
post_lm_bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_4.bin")
|
||||
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
|
||||
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
|
||||
st_idx = 5
|
||||
# 6, 7 are past k/v
|
||||
for idx, (weight, scale) in enumerate(weights):
|
||||
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
|
||||
weight.numpy().tofile(bin_file)
|
||||
bin_file = os.path.join(weight_dir,
|
||||
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
|
||||
scale.numpy().tofile(bin_file)
|
||||
|
||||
if isinstance(weights[0], tuple):
|
||||
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
|
||||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
fused_decoder = LowBitMinicpmMultiDecoderlayer(
|
||||
[1, 1, num_heads * head_dim],
|
||||
input_layernorm_weights=input_layer_norm_weights,
|
||||
post_attn_layernorm_weights=post_attn_layernorm_weights,
|
||||
cached_cos=cached_cos,
|
||||
cached_sin=cached_sin,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
num_layers=fused_layer_num,
|
||||
max_seq_len=kv_len,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
scale_depth=scale_depth,
|
||||
num_hidden_layers=num_hidden_layers,
|
||||
mode=mode,
|
||||
transpose_value=transpose_value_cache,
|
||||
dtype=np_dtype,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size
|
||||
)
|
||||
update_names_of_IR_and_export_blob(fused_decoder,
|
||||
f"decoder_layer_{i}",
|
||||
save_dir,
|
||||
compile_blob=True,
|
||||
keep_ir=False)
|
||||
return 0
|
||||
|
|
|
|||
Loading…
Reference in a new issue