refactor qwen2 and llama3 (#12587)
This commit is contained in:
parent
51ff9ebd8a
commit
f3b5fad3be
4 changed files with 16 additions and 103 deletions
|
|
@ -37,7 +37,6 @@ from typing import Optional, Tuple
|
|||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch.nn import functional as F
|
||||
from ipex_llm.transformers.models.utils import use_fused_layer_norm
|
||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
|
||||
import os
|
||||
|
|
|
|||
|
|
@ -42,14 +42,12 @@ import torch
|
|||
from typing import Optional, Tuple, Union
|
||||
from transformers.cache_utils import Cache
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.models.llama.modeling_llama import repeat_kv
|
||||
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
||||
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from ipex_llm.transformers.models.common import attention_softmax
|
||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
||||
from ipex_llm.transformers.models.utils import should_use_compresskv, \
|
||||
is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \
|
||||
|
|
@ -233,44 +231,11 @@ def llama_attention_forward(
|
|||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, None)
|
||||
|
||||
kv_seq_len = key_states.size(2)
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, :kv_seq_len]
|
||||
else:
|
||||
causal_mask = None
|
||||
|
||||
attn_weights = None
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||
value_states, causal_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
||||
value_states, causal_mask)
|
||||
else:
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if causal_mask is not None:
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = attention_softmax(attn_weights)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
attn_output = scaled_dot_product_attention(
|
||||
query_states, key_states, value_states,
|
||||
attention_mask, q_len == key_states.size(2), math.sqrt(self.head_dim)
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||
|
|
|
|||
|
|
@ -46,11 +46,12 @@ from torch.nn import CrossEntropyLoss
|
|||
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
||||
|
||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||
from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
|
||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache, \
|
||||
should_use_compresskv, is_enough_kv_cache_room_4_36, get_compresskv_attn_mask
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
|
||||
should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention
|
||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
||||
DynamicCompressCache, DynamicCompressFp8Cache
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
|
|
@ -532,7 +533,6 @@ def qwen2_attention_forward(
|
|||
# [CompressKV]
|
||||
from ipex_llm.transformers.kv import DynamicCompressCache
|
||||
use_compresskv = isinstance(past_key_value, DynamicCompressCache)
|
||||
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
|
||||
|
||||
if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
|
|
@ -583,18 +583,8 @@ def qwen2_attention_forward(
|
|||
self.layer_idx, None)
|
||||
|
||||
attn_weights = None
|
||||
if query_states.device.type == "cpu":
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
attn_output = sdpa(query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=attention_mask,
|
||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||
is_causal=self.is_causal and attention_mask is None and q_len > 1)
|
||||
elif not self.training and not hidden_states.requires_grad and \
|
||||
use_flash_attention(query_states, key_states, attention_mask):
|
||||
if query_states.device.type == 'xpu' \
|
||||
and use_flash_attention(query_states, key_states, attention_mask):
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
|
@ -602,42 +592,11 @@ def qwen2_attention_forward(
|
|||
key_states.to(device, dtype=torch.float16),
|
||||
value_states.to(device, dtype=torch.float16),
|
||||
is_causal=True).to(hidden_states.dtype)
|
||||
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import xe_addons
|
||||
if use_compresskv:
|
||||
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
|
||||
if use_quantizekv:
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import xe_addons
|
||||
if use_quantizekv:
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
else:
|
||||
if use_quantizekv:
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
query_states.dtype)
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
if attention_mask is not None:
|
||||
attn_weights = attn_weights + attention_mask
|
||||
# upcast attention to fp32
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
attn_output = scaled_dot_product_attention(
|
||||
query_states, key_states, value_states,
|
||||
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
|
|
|||
|
|
@ -358,16 +358,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
|
|||
)
|
||||
|
||||
|
||||
def use_fused_layer_norm(x: torch.Tensor, training: bool):
|
||||
device = get_xpu_device_type(x)
|
||||
return (
|
||||
not training
|
||||
and not x.requires_grad
|
||||
and device in ["arc", "flex", "pvc", "mtl", "lnl"] # fused layer norm cannot run on UHD
|
||||
and x.numel() // x.size(-1) == 1 # fused layer norm is slower in first token
|
||||
)
|
||||
|
||||
|
||||
def fp16_fusion_check(proj, x, training):
|
||||
# only use fp16 fusion on PVC inference
|
||||
if proj is None:
|
||||
|
|
|
|||
Loading…
Reference in a new issue