refactor qwen2 and llama3 (#12587)

This commit is contained in:
Yishuo Wang 2024-12-20 13:25:25 +08:00 committed by GitHub
parent 51ff9ebd8a
commit f3b5fad3be
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 16 additions and 103 deletions

View file

@ -37,7 +37,6 @@ from typing import Optional, Tuple
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
from torch.nn import functional as F from torch.nn import functional as F
from ipex_llm.transformers.models.utils import use_fused_layer_norm
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
import os import os

View file

@ -42,14 +42,12 @@ import torch
from typing import Optional, Tuple, Union from typing import Optional, Tuple, Union
from transformers.cache_utils import Cache from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import repeat_kv
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
from ipex_llm.utils.common import invalidInputError from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.common import attention_softmax from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import should_use_fuse_rope from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_compresskv, \ from ipex_llm.transformers.models.utils import should_use_compresskv, \
is_enough_kv_cache_room_4_36 is_enough_kv_cache_room_4_36
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \ from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \
@ -233,44 +231,11 @@ def llama_attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states, key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None) self.layer_idx, None)
kv_seq_len = key_states.size(2)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :kv_seq_len]
else:
causal_mask = None
attn_weights = None attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): attn_output = scaled_dot_product_attention(
import xe_addons query_states, key_states, value_states,
if isinstance(past_key_value, DynamicFp8Cache): attention_mask, q_len == key_states.size(2), math.sqrt(self.head_dim)
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask) )
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, causal_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, causal_mask)
else:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if causal_mask is not None:
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = attn_output.reshape(bsz, q_len, -1)

View file

@ -46,11 +46,12 @@ from torch.nn import CrossEntropyLoss
from torch.nn.functional import scaled_dot_product_attention as sdpa from torch.nn.functional import scaled_dot_product_attention as sdpa
from ipex_llm.transformers.models.common import merge_qkv_base from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
from ipex_llm.transformers.models.utils import should_use_fuse_rope from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache, \ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
should_use_compresskv, is_enough_kv_cache_room_4_36, get_compresskv_attn_mask should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal from ipex_llm.transformers.models.utils import use_flash_attention
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \ from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
DynamicCompressCache, DynamicCompressFp8Cache DynamicCompressCache, DynamicCompressFp8Cache
from ipex_llm.utils.common import invalidInputError from ipex_llm.utils.common import invalidInputError
@ -532,7 +533,6 @@ def qwen2_attention_forward(
# [CompressKV] # [CompressKV]
from ipex_llm.transformers.kv import DynamicCompressCache from ipex_llm.transformers.kv import DynamicCompressCache
use_compresskv = isinstance(past_key_value, DynamicCompressCache) use_compresskv = isinstance(past_key_value, DynamicCompressCache)
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
if hasattr(self, 'qkv_proj') and self.qkv_proj is not None: if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
qkv = self.qkv_proj(hidden_states) qkv = self.qkv_proj(hidden_states)
@ -583,18 +583,8 @@ def qwen2_attention_forward(
self.layer_idx, None) self.layer_idx, None)
attn_weights = None attn_weights = None
if query_states.device.type == "cpu": if query_states.device.type == 'xpu' \
# repeat k/v heads if n_kv_heads < n_heads and use_flash_attention(query_states, key_states, attention_mask):
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output = sdpa(query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=self.is_causal and attention_mask is None and q_len > 1)
elif not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
# repeat k/v heads if n_kv_heads < n_heads # repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups) key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups)
@ -602,42 +592,11 @@ def qwen2_attention_forward(
key_states.to(device, dtype=torch.float16), key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16), value_states.to(device, dtype=torch.float16),
is_causal=True).to(hidden_states.dtype) is_causal=True).to(hidden_states.dtype)
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_compresskv:
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
if use_quantizekv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else: else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, attn_output = scaled_dot_product_attention(
attention_mask) query_states, key_states, value_states,
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
import xe_addons )
if use_quantizekv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantizekv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

View file

@ -358,16 +358,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
) )
def use_fused_layer_norm(x: torch.Tensor, training: bool):
device = get_xpu_device_type(x)
return (
not training
and not x.requires_grad
and device in ["arc", "flex", "pvc", "mtl", "lnl"] # fused layer norm cannot run on UHD
and x.numel() // x.size(-1) == 1 # fused layer norm is slower in first token
)
def fp16_fusion_check(proj, x, training): def fp16_fusion_check(proj, x, training):
# only use fp16 fusion on PVC inference # only use fp16 fusion on PVC inference
if proj is None: if proj is None: