refactor qwen2 and llama3 (#12587)
This commit is contained in:
parent
51ff9ebd8a
commit
f3b5fad3be
4 changed files with 16 additions and 103 deletions
|
|
@ -37,7 +37,6 @@ from typing import Optional, Tuple
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.checkpoint
|
import torch.utils.checkpoint
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from ipex_llm.transformers.models.utils import use_fused_layer_norm
|
|
||||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
|
||||||
|
|
@ -42,14 +42,12 @@ import torch
|
||||||
from typing import Optional, Tuple, Union
|
from typing import Optional, Tuple, Union
|
||||||
from transformers.cache_utils import Cache
|
from transformers.cache_utils import Cache
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
from transformers.models.llama.modeling_llama import repeat_kv
|
|
||||||
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
||||||
|
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
from ipex_llm.transformers.models.common import attention_softmax
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import should_use_compresskv, \
|
from ipex_llm.transformers.models.utils import should_use_compresskv, \
|
||||||
is_enough_kv_cache_room_4_36
|
is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \
|
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \
|
||||||
|
|
@ -233,44 +231,11 @@ def llama_attention_forward(
|
||||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
self.layer_idx, None)
|
self.layer_idx, None)
|
||||||
|
|
||||||
kv_seq_len = key_states.size(2)
|
|
||||||
if attention_mask is not None: # no matter the length, we just slice it
|
|
||||||
causal_mask = attention_mask[:, :, :, :kv_seq_len]
|
|
||||||
else:
|
|
||||||
causal_mask = None
|
|
||||||
|
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
attn_output = scaled_dot_product_attention(
|
||||||
import xe_addons
|
query_states, key_states, value_states,
|
||||||
if isinstance(past_key_value, DynamicFp8Cache):
|
attention_mask, q_len == key_states.size(2), math.sqrt(self.head_dim)
|
||||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
|
)
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
|
|
||||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
|
||||||
import xe_addons
|
|
||||||
if isinstance(past_key_value, DynamicFp8Cache):
|
|
||||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
|
||||||
value_states, causal_mask)
|
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
|
||||||
value_states, causal_mask)
|
|
||||||
else:
|
|
||||||
if isinstance(past_key_value, DynamicFp8Cache):
|
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
|
||||||
query_states.dtype)
|
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states,
|
|
||||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
||||||
|
|
||||||
if causal_mask is not None:
|
|
||||||
attn_weights = attn_weights + causal_mask
|
|
||||||
|
|
||||||
# upcast attention to fp32
|
|
||||||
attn_weights = attention_softmax(attn_weights)
|
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(bsz, q_len, -1)
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||||
|
|
|
||||||
|
|
@ -46,11 +46,12 @@ from torch.nn import CrossEntropyLoss
|
||||||
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
||||||
|
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
|
from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache, \
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
|
||||||
should_use_compresskv, is_enough_kv_cache_room_4_36, get_compresskv_attn_mask
|
should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.utils import use_flash_attention
|
||||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
||||||
DynamicCompressCache, DynamicCompressFp8Cache
|
DynamicCompressCache, DynamicCompressFp8Cache
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
|
@ -532,7 +533,6 @@ def qwen2_attention_forward(
|
||||||
# [CompressKV]
|
# [CompressKV]
|
||||||
from ipex_llm.transformers.kv import DynamicCompressCache
|
from ipex_llm.transformers.kv import DynamicCompressCache
|
||||||
use_compresskv = isinstance(past_key_value, DynamicCompressCache)
|
use_compresskv = isinstance(past_key_value, DynamicCompressCache)
|
||||||
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
|
|
||||||
|
|
||||||
if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
|
if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
|
||||||
qkv = self.qkv_proj(hidden_states)
|
qkv = self.qkv_proj(hidden_states)
|
||||||
|
|
@ -583,18 +583,8 @@ def qwen2_attention_forward(
|
||||||
self.layer_idx, None)
|
self.layer_idx, None)
|
||||||
|
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
if query_states.device.type == "cpu":
|
if query_states.device.type == 'xpu' \
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
and use_flash_attention(query_states, key_states, attention_mask):
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
||||||
attn_output = sdpa(query_states,
|
|
||||||
key_states,
|
|
||||||
value_states,
|
|
||||||
attn_mask=attention_mask,
|
|
||||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
||||||
is_causal=self.is_causal and attention_mask is None and q_len > 1)
|
|
||||||
elif not self.training and not hidden_states.requires_grad and \
|
|
||||||
use_flash_attention(query_states, key_states, attention_mask):
|
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
@ -602,42 +592,11 @@ def qwen2_attention_forward(
|
||||||
key_states.to(device, dtype=torch.float16),
|
key_states.to(device, dtype=torch.float16),
|
||||||
value_states.to(device, dtype=torch.float16),
|
value_states.to(device, dtype=torch.float16),
|
||||||
is_causal=True).to(hidden_states.dtype)
|
is_causal=True).to(hidden_states.dtype)
|
||||||
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
|
||||||
import xe_addons
|
|
||||||
if use_compresskv:
|
|
||||||
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
|
|
||||||
if use_quantizekv:
|
|
||||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
|
||||||
attention_mask)
|
|
||||||
else:
|
else:
|
||||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
attn_output = scaled_dot_product_attention(
|
||||||
attention_mask)
|
query_states, key_states, value_states,
|
||||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
|
||||||
import xe_addons
|
)
|
||||||
if use_quantizekv:
|
|
||||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
if use_quantizekv:
|
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
|
||||||
query_states.dtype)
|
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states,
|
|
||||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_weights = attn_weights + attention_mask
|
|
||||||
# upcast attention to fp32
|
|
||||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
|
||||||
dtype=torch.float32).to(query_states.dtype)
|
|
||||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
|
||||||
training=self.training)
|
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
|
||||||
|
|
@ -358,16 +358,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def use_fused_layer_norm(x: torch.Tensor, training: bool):
|
|
||||||
device = get_xpu_device_type(x)
|
|
||||||
return (
|
|
||||||
not training
|
|
||||||
and not x.requires_grad
|
|
||||||
and device in ["arc", "flex", "pvc", "mtl", "lnl"] # fused layer norm cannot run on UHD
|
|
||||||
and x.numel() // x.size(-1) == 1 # fused layer norm is slower in first token
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def fp16_fusion_check(proj, x, training):
|
def fp16_fusion_check(proj, x, training):
|
||||||
# only use fp16 fusion on PVC inference
|
# only use fp16 fusion on PVC inference
|
||||||
if proj is None:
|
if proj is None:
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue