fix mlp batch size check (#9718)

This commit is contained in:
Yishuo Wang 2023-12-19 14:22:22 +08:00 committed by GitHub
parent 1fa7793fc0
commit f2e6abb563
3 changed files with 8 additions and 6 deletions

View file

@ -69,11 +69,11 @@ def baichuan_mlp_forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
x_2d = x.view(-1, x.shape[-1])
if x_2d.shape[0] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
and self.gate_proj.qtype == ggml_tensor_qtype["sym_int4"] \
and not (self.training and x.requires_grad):
import linear_q4_0
x_2d = x.view(-1, x.shape[-1])
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.down_proj(linear_q4_0.mlp_forward_q4_0_xpu(

View file

@ -42,6 +42,7 @@ from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache,
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
from bigdl.llm.transformers.low_bit_linear import SYM_INT4
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
@ -96,10 +97,11 @@ def llama_mlp_forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
x_2d = x.view(-1, x.shape[-1])
if x_2d.shape[0] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
and self.gate_proj.qtype == ggml_tensor_qtype["sym_int4"] \
and not (self.training and x.requires_grad):
import linear_q4_0
x_2d = x.view(-1, x.shape[-1])
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.down_proj(linear_q4_0.mlp_forward_q4_0_xpu(

View file

@ -240,11 +240,11 @@ def qwen_attention_forward(
def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
x_2d = x.view(-1, x.shape[-1])
if x_2d.shape[0] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
and self.w2.qtype == ggml_tensor_qtype["sym_int4"] \
and not (self.training and x.requires_grad):
import linear_q4_0
x_2d = x.view(-1, x.shape[-1])
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.c_proj(linear_q4_0.mlp_forward_q4_0_xpu(