Add GLM-4 CPU example (#11223)
* Add GLM-4 example * add tiktoken dependency * fix * fix
This commit is contained in:
parent
40fc8704c4
commit
f224e98297
7 changed files with 455 additions and 0 deletions
|
|
@ -154,6 +154,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
|
||||||
| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
|
| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
|
||||||
| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
||||||
| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3) |
|
| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3) |
|
||||||
|
| GLM-4 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm4) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4) |
|
||||||
| Mistral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mistral) |
|
| Mistral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mistral) |
|
||||||
| Mixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral) |
|
| Mixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral) |
|
||||||
| Falcon | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/falcon) |
|
| Falcon | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/falcon) |
|
||||||
|
|
|
||||||
|
|
@ -257,6 +257,13 @@ Verified Models
|
||||||
<td>
|
<td>
|
||||||
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3">link</a></td>
|
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm3">link</a></td>
|
||||||
</tr>
|
</tr>
|
||||||
|
<tr>
|
||||||
|
<td>GLM-4</td>
|
||||||
|
<td>
|
||||||
|
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm4">link</a></td>
|
||||||
|
<td>
|
||||||
|
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/glm4">link</a></td>
|
||||||
|
</tr>
|
||||||
<tr>
|
<tr>
|
||||||
<td>Mistral</td>
|
<td>Mistral</td>
|
||||||
<td>
|
<td>
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,166 @@
|
||||||
|
# GLM-4
|
||||||
|
|
||||||
|
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-4 models. For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) as a reference GLM-4 model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example 1: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
|
||||||
|
On Linux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
# install the latest ipex-llm nightly build with 'all' option
|
||||||
|
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
|
# install tiktoken required for GLM-4
|
||||||
|
pip install tiktoken
|
||||||
|
```
|
||||||
|
|
||||||
|
On Windows:
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
conda create -n llm python=3.11
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
||||||
|
pip install tiktoken
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
```
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||||
|
>
|
||||||
|
> Please select the appropriate size of the GLM-4 model based on the capabilities of your machine.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```cmd
|
||||||
|
python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set IPEX-LLM env variables
|
||||||
|
source ipex-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.3 Sample Output
|
||||||
|
##### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
<|user|>
|
||||||
|
AI是什么?
|
||||||
|
<|assistant|>
|
||||||
|
-------------------- Output --------------------
|
||||||
|
|
||||||
|
AI是什么?
|
||||||
|
|
||||||
|
AI,即人工智能(Artificial Intelligence),是指由人创造出来的,能够模拟、延伸和扩展人的智能的计算机系统或机器。人工智能技术
|
||||||
|
```
|
||||||
|
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
<|user|>
|
||||||
|
What is AI?
|
||||||
|
<|assistant|>
|
||||||
|
-------------------- Output --------------------
|
||||||
|
|
||||||
|
What is AI?
|
||||||
|
|
||||||
|
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art
|
||||||
|
```
|
||||||
|
|
||||||
|
## Example 2: Stream Chat using `stream_chat()` API
|
||||||
|
In the example [streamchat.py](./streamchat.py), we show a basic use case for a GLM-4 model to stream chat, with IPEX-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
|
||||||
|
On Linux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
# install the latest ipex-llm nightly build with 'all' option
|
||||||
|
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
|
# install tiktoken required for GLM-4
|
||||||
|
pip install tiktoken
|
||||||
|
```
|
||||||
|
|
||||||
|
On Windows:
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
conda create -n llm python=3.11
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
||||||
|
pip install tiktoken
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
**Stream Chat using `stream_chat()` API**:
|
||||||
|
```
|
||||||
|
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
|
||||||
|
```
|
||||||
|
|
||||||
|
**Chat using `chat()` API**:
|
||||||
|
```
|
||||||
|
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`.
|
||||||
|
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
|
||||||
|
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
|
||||||
|
|
||||||
|
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||||
|
>
|
||||||
|
> Please select the appropriate size of the GLM-4 model based on the capabilities of your machine.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```cmd
|
||||||
|
$env:PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered
|
||||||
|
python ./streamchat.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set IPEX-LLM env variables
|
||||||
|
source ipex-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
export PYTHONUNBUFFERED=1 # ensure stdout and stderr streams are sent straight to terminal without being first buffered
|
||||||
|
numactl -C 0-47 -m 0 python ./streamchat.py
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,67 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from ipex_llm.transformers import AutoModel
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py
|
||||||
|
GLM4_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-4 model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
|
||||||
|
help='The huggingface repo id for the GLM-4 model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModel.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
use_cache=True)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = GLM4_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
@ -0,0 +1,62 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from ipex_llm.transformers import AutoModel
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Stream Chat for GLM-4 model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
|
||||||
|
help='The huggingface repo id for the GLM-4 model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
|
||||||
|
help='Qustion you want to ask')
|
||||||
|
parser.add_argument('--disable-stream', action="store_true",
|
||||||
|
help='Disable stream chat')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
disable_stream = args.disable_stream
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModel.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
if disable_stream:
|
||||||
|
# Chat
|
||||||
|
response, history = model.chat(tokenizer, args.question, history=[])
|
||||||
|
print('-'*20, 'Chat Output', '-'*20)
|
||||||
|
print(response)
|
||||||
|
else:
|
||||||
|
# Stream chat
|
||||||
|
response_ = ""
|
||||||
|
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||||
|
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
|
||||||
|
print(response.replace(response_, ""), end="")
|
||||||
|
response_ = response
|
||||||
87
python/llm/example/CPU/PyTorch-Models/Model/glm4/README.md
Normal file
87
python/llm/example/CPU/PyTorch-Models/Model/glm4/README.md
Normal file
|
|
@ -0,0 +1,87 @@
|
||||||
|
# GLM-4
|
||||||
|
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate GLM-4 models. For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) as a reference GLM-4 model.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://conda-forge.org/download/).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for IPEX-LLM:
|
||||||
|
|
||||||
|
On Linux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.11 # recommend to use Python 3.11
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
# install the latest ipex-llm nightly build with 'all' option
|
||||||
|
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
|
# install tiktoken required for GLM-4
|
||||||
|
pip install tiktoken
|
||||||
|
```
|
||||||
|
|
||||||
|
On Windows:
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
conda create -n llm python=3.11
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade ipex-llm[all]
|
||||||
|
|
||||||
|
pip install tiktoken
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```cmd
|
||||||
|
python ./generate.py --prompt 'AI是什么?'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set IPEX-LLM env variables
|
||||||
|
source ipex-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py --prompt 'AI是什么?'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the GLM-4 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'`.
|
||||||
|
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
|
||||||
|
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### 2.4 Sample Output
|
||||||
|
##### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Output --------------------
|
||||||
|
|
||||||
|
AI是什么?
|
||||||
|
|
||||||
|
AI,即人工智能(Artificial Intelligence),是指由人创造出来的,能够模拟、延伸和扩展人的智能的计算机系统或机器。人工智能技术
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Output --------------------
|
||||||
|
|
||||||
|
What is AI?
|
||||||
|
|
||||||
|
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art
|
||||||
|
```
|
||||||
65
python/llm/example/CPU/PyTorch-Models/Model/glm4/generate.py
Normal file
65
python/llm/example/CPU/PyTorch-Models/Model/glm4/generate.py
Normal file
|
|
@ -0,0 +1,65 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
from ipex_llm import optimize_model
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/tokenization_chatglm.py
|
||||||
|
GLM4_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-4 model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4-9b-chat",
|
||||||
|
help='The huggingface repo id for the GLM-4 model to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = AutoModel.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype='auto',
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
use_cache=True)
|
||||||
|
|
||||||
|
# With only one line to enable IPEX-LLM optimization on model
|
||||||
|
model = optimize_model(model)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = GLM4_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
Loading…
Reference in a new issue