Optimize qwen 1.5 14B batch performance (#11370)
This commit is contained in:
parent
5aa3e427a9
commit
f0fdfa081b
2 changed files with 35 additions and 1 deletions
|
|
@ -735,6 +735,8 @@ def _optimize_pre(model):
|
|||
if model.config.model_type == "qwen2":
|
||||
from ipex_llm.transformers.models.qwen2 import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
from ipex_llm.transformers.models.qwen2 import padding_mlp
|
||||
model.apply(padding_mlp)
|
||||
if model.config.model_type == "qwen2_moe":
|
||||
from ipex_llm.transformers.models.qwen2_moe import merge_qkv
|
||||
model.apply(merge_qkv)
|
||||
|
|
|
|||
|
|
@ -49,7 +49,8 @@ from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use
|
|||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
|
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, apply_rotary_pos_emb, repeat_kv
|
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
|
||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
|
||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
|
||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
|
|
@ -288,6 +289,37 @@ def merge_qkv(module: torch.nn.Module):
|
|||
del module.q_proj, module.k_proj, module.v_proj
|
||||
|
||||
|
||||
def padding_mlp(module: torch.nn.Module):
|
||||
# for qwen 1.5 14B
|
||||
if isinstance(module, Qwen2MLP):
|
||||
hidden_size = module.hidden_size
|
||||
intermediate_size = module.intermediate_size
|
||||
padding_intermediate_size = (intermediate_size + 256 - 1) // 256 * 256
|
||||
if intermediate_size % 256 == 0:
|
||||
return
|
||||
|
||||
gate_weight = module.gate_proj.weight.data
|
||||
new_gate_weight = torch.zeros([padding_intermediate_size, hidden_size],
|
||||
dtype=gate_weight.dtype, device=gate_weight.device)
|
||||
new_gate_weight[:intermediate_size, :] = gate_weight
|
||||
module.gate_proj.out_features = padding_intermediate_size
|
||||
module.gate_proj.weight = torch.nn.Parameter(new_gate_weight, requires_grad=False)
|
||||
|
||||
up_weight = module.up_proj.weight.data
|
||||
new_up_weight = torch.zeros([padding_intermediate_size, hidden_size],
|
||||
dtype=up_weight.dtype, device=up_weight.device)
|
||||
new_up_weight[:intermediate_size, :] = up_weight
|
||||
module.up_proj.out_features = padding_intermediate_size
|
||||
module.up_proj.weight = torch.nn.Parameter(new_up_weight, requires_grad=False)
|
||||
|
||||
down_weight = module.down_proj.weight.data
|
||||
new_down_weight = torch.zeros([hidden_size, padding_intermediate_size],
|
||||
dtype=down_weight.dtype, device=down_weight.device)
|
||||
new_down_weight[:, :intermediate_size] = down_weight
|
||||
module.down_proj.in_features = padding_intermediate_size
|
||||
module.down_proj.weight = torch.nn.Parameter(new_down_weight, requires_grad=False)
|
||||
|
||||
|
||||
def qwen2_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
|
|
|||
Loading…
Reference in a new issue