add cpu example of LLaVA (#9269)
* add LLaVA cpu example * Small text updates * update link --------- Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
parent
7f2ad182fd
commit
f053688cad
5 changed files with 427 additions and 0 deletions
|
|
@ -154,6 +154,8 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
|||
| Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
|
||||
| Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
|
||||
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
|
||||
| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | |
|
||||
|
||||
|
||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
||||
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
|||
| Phi-1_5 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
|
||||
| Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
|
||||
| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
|
||||
| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | |
|
||||
|
||||
### Working with `bigdl-llm`
|
||||
|
||||
|
|
|
|||
|
|
@ -13,6 +13,7 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
|
|||
| Flan-t5 | [link](flan-t5) |
|
||||
| Phi-1_5 | [link](phi-1_5) |
|
||||
| Qwen-VL | [link](qwen-vl) |
|
||||
| LLaVA | [link](llava) |
|
||||
|
||||
## Recommended Requirements
|
||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
|
||||
|
|
|
|||
86
python/llm/example/CPU/PyTorch-Models/Model/llava/README.md
Normal file
86
python/llm/example/CPU/PyTorch-Models/Model/llava/README.md
Normal file
|
|
@ -0,0 +1,86 @@
|
|||
# LLaVA
|
||||
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on LLaVA models. For illustration purposes, we utilize the [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) as a reference LLaVA model.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Multi-turn chat centered around an image using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-trun chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||
|
||||
After installing conda, create a Python environment for BigDL-LLM:
|
||||
```bash
|
||||
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||
conda activate llm
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||
|
||||
git clone -b v1.1.1 --depth=1 https://github.com/haotian-liu/LLaVA.git # clone the llava libary
|
||||
pip install einops # install dependencies required by llava
|
||||
cp generate.py ./LLaVA/ # copy our example to the LLaVA folder
|
||||
cd LLaVA # change the working directory to the LLaVA folder
|
||||
```
|
||||
|
||||
### 2. Run
|
||||
After setting up the Python environment, you could run the example by following steps.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the LLaVA model based on the capabilities of your machine.
|
||||
|
||||
#### 2.1 Client
|
||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||
```powershell
|
||||
python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#3-trouble-shooting) section.
|
||||
|
||||
#### 2.2 Server
|
||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||
|
||||
E.g. on Linux,
|
||||
```bash
|
||||
# set BigDL-Nano env variables
|
||||
source bigdl-nano-init
|
||||
|
||||
# e.g. for a server with 48 cores per socket
|
||||
export OMP_NUM_THREADS=48
|
||||
numactl -C 0-47 -m 0 python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
|
||||
```
|
||||
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||
|
||||
#### 2.3 Arguments Info
|
||||
In the example, several arguments can be passed to satisfy your requirements:
|
||||
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-13b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-13b'`.
|
||||
- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
|
||||
|
||||
|
||||
#### 2.4 Sample Output
|
||||
#### [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b)
|
||||
|
||||
```log
|
||||
USER: 你知道这幅画是谁画的吗?
|
||||
ASSISTANT: 这幅画是由著名的文艺复兴画家达芬奇(Leonardo da Vinci)画的。该画是他的代表作之一,是出自意大利佛罗伦萨的博物馆。画中的女子被认为是一位不为人知的模特,而且画作可能还有一个人物底版,这可能使得这幅画的价值更高。
|
||||
```
|
||||
|
||||
The sample inpuit image is:
|
||||
|
||||
<a href="https://llava-vl.github.io/static/images/monalisa.jpg"><img width=250px src="https://llava-vl.github.io/static/images/monalisa.jpg" ></a>
|
||||
|
||||
### 3. Trouble shooting
|
||||
|
||||
#### 3.1 SSLError
|
||||
If you encounter the following output, it means your machine has some trouble accessing huggingface.co.
|
||||
```log
|
||||
requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"),
|
||||
```
|
||||
|
||||
You can resolve this problem with the following steps:
|
||||
1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example.
|
||||
2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example.
|
||||
337
python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py
Normal file
337
python/llm/example/CPU/PyTorch-Models/Model/llava/generate.py
Normal file
|
|
@ -0,0 +1,337 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py
|
||||
# and
|
||||
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py
|
||||
#
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import torch
|
||||
import time
|
||||
|
||||
from transformers import AutoModelForCausalLM
|
||||
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llava.constants import (
|
||||
DEFAULT_IMAGE_PATCH_TOKEN,
|
||||
IMAGE_TOKEN_INDEX,
|
||||
DEFAULT_IMAGE_TOKEN,
|
||||
DEFAULT_IM_START_TOKEN,
|
||||
DEFAULT_IM_END_TOKEN
|
||||
)
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.utils import disable_torch_init
|
||||
from llava.mm_utils import (
|
||||
process_images,
|
||||
tokenizer_image_token,
|
||||
get_model_name_from_path,
|
||||
KeywordsStoppingCriteria
|
||||
)
|
||||
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
# Lod the pretained model.
|
||||
# Adapted from llava.model.builder.load_pretrained_model.
|
||||
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
|
||||
device_map="auto", device="cpu"):
|
||||
kwargs = {"device_map": device_map}
|
||||
kwargs['torch_dtype'] = torch.float32
|
||||
|
||||
if 'llava' in model_name.lower():
|
||||
# Load LLaVA model
|
||||
if 'lora' in model_name.lower() and model_base is None:
|
||||
warnings.warn('There is `lora` in model name but no `model_base` is provided.'
|
||||
'If you are loading a LoRA model, please provide the `model_base` argument'
|
||||
'. Detailed instruction:'
|
||||
'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
||||
if 'lora' in model_name.lower() and model_base is not None:
|
||||
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_base, use_fast=False)
|
||||
print('Loading LLaVA from base model...')
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True,
|
||||
config=lora_cfg_pretrained, **kwargs)
|
||||
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
||||
if model.lm_head.weight.shape[0] != token_num:
|
||||
model.lm_head.weight = torch.nn.Parameter(torch.empty(
|
||||
token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
||||
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(
|
||||
token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
||||
|
||||
print('Loading additional LLaVA weights...')
|
||||
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
||||
non_lora_trainables = torch.load(os.path.join(model_path,
|
||||
'non_lora_trainables.bin'),
|
||||
map_location='cpu')
|
||||
else:
|
||||
# this is probably from HF Hub
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
def load_from_hf(repo_id, filename, subfolder=None):
|
||||
cache_file = hf_hub_download(
|
||||
repo_id=repo_id,
|
||||
filename=filename,
|
||||
subfolder=subfolder)
|
||||
return torch.load(cache_file, map_location='cpu')
|
||||
non_lora_trainables = load_from_hf(
|
||||
model_path, 'non_lora_trainables.bin')
|
||||
non_lora_trainables = {(k[11:] if k.startswith(
|
||||
'base_model.') else k): v for k, v in non_lora_trainables.items()}
|
||||
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
||||
non_lora_trainables = {(k[6:] if k.startswith(
|
||||
'model.') else k): v for k, v in non_lora_trainables.items()}
|
||||
model.load_state_dict(non_lora_trainables, strict=False)
|
||||
|
||||
from peft import PeftModel
|
||||
print('Loading LoRA weights...')
|
||||
model = PeftModel.from_pretrained(model, model_path)
|
||||
print('Merging LoRA weights...')
|
||||
model = model.merge_and_unload()
|
||||
print('Model is loaded...')
|
||||
elif model_base is not None:
|
||||
# this may be mm projector only
|
||||
print('Loading LLaVA from base model...')
|
||||
if 'mpt' in model_name.lower():
|
||||
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
|
||||
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(
|
||||
model_path, 'configuration_mpt.py'))
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_base, use_fast=True)
|
||||
cfg_pretrained = AutoConfig.from_pretrained(
|
||||
model_path, trust_remote_code=True)
|
||||
model = LlavaMPTForCausalLM.from_pretrained(
|
||||
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_base, use_fast=False)
|
||||
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(
|
||||
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
||||
|
||||
mm_projector_weights = torch.load(os.path.join(
|
||||
model_path, 'mm_projector.bin'), map_location='cpu')
|
||||
mm_projector_weights = {k: v.to(torch.float32)
|
||||
for k, v in mm_projector_weights.items()}
|
||||
model.load_state_dict(mm_projector_weights, strict=False)
|
||||
else:
|
||||
if 'mpt' in model_name.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path, use_fast=True)
|
||||
model = LlavaMPTForCausalLM.from_pretrained(
|
||||
model_path, low_cpu_mem_usage=True, **kwargs)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path, use_fast=False)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(
|
||||
model_path, low_cpu_mem_usage=True, **kwargs)
|
||||
else:
|
||||
# Load language model
|
||||
if model_base is not None:
|
||||
# PEFT model
|
||||
from peft import PeftModel
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_base, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto")
|
||||
print(f"Loading LoRA weights from {model_path}")
|
||||
model = PeftModel.from_pretrained(model, model_path)
|
||||
print(f"Merging weights")
|
||||
model = model.merge_and_unload()
|
||||
print('Convert to FP32...')
|
||||
model.to(torch.float32)
|
||||
else:
|
||||
use_fast = False
|
||||
if 'mpt' in model_name.lower():
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path, use_fast=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, low_cpu_mem_usage=True, **kwargs)
|
||||
|
||||
image_processor = None
|
||||
|
||||
if 'llava' in model_name.lower():
|
||||
mm_use_im_start_end = getattr(
|
||||
model.config, "mm_use_im_start_end", False)
|
||||
mm_use_im_patch_token = getattr(
|
||||
model.config, "mm_use_im_patch_token", True)
|
||||
if mm_use_im_patch_token:
|
||||
tokenizer.add_tokens(
|
||||
[DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens(
|
||||
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
vision_tower = model.get_vision_tower()
|
||||
if not vision_tower.is_loaded:
|
||||
vision_tower.load_model()
|
||||
vision_tower.to(device=device, dtype=torch.float32)
|
||||
image_processor = vision_tower.image_processor
|
||||
|
||||
if hasattr(model.config, "max_sequence_length"):
|
||||
context_len = model.config.max_sequence_length
|
||||
else:
|
||||
context_len = 2048
|
||||
|
||||
return tokenizer, model, image_processor, context_len
|
||||
|
||||
# Initialize conversation from templates and get conversation roles.
|
||||
def get_conv_and_role(model_name):
|
||||
if 'llama-2' in model_name.lower():
|
||||
conv_mode = "llava_llama_2"
|
||||
elif "v1" in model_name.lower():
|
||||
conv_mode = "llava_v1"
|
||||
elif "mpt" in model_name.lower():
|
||||
conv_mode = "mpt"
|
||||
else:
|
||||
conv_mode = "llava_v0"
|
||||
|
||||
conv = conv_templates[conv_mode].copy()
|
||||
if "mpt" in model_name.lower():
|
||||
roles = ('user', 'assistant')
|
||||
else:
|
||||
roles = conv.roles
|
||||
|
||||
return conv, roles
|
||||
|
||||
# Load image from a url or path.
|
||||
def load_image(image_file):
|
||||
import requests
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
|
||||
if image_file.startswith('http://') or image_file.startswith('https://'):
|
||||
response = requests.get(image_file)
|
||||
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||||
else:
|
||||
image = Image.open(image_file).convert('RGB')
|
||||
return image
|
||||
|
||||
def generate_image_tensor(image_file):
|
||||
image = load_image(image_file)
|
||||
model_cfg = {"image_aspect_ratio": 'pad'}
|
||||
image_tensor = process_images([image], image_processor, model_cfg)
|
||||
return image_tensor
|
||||
|
||||
# Generate input prompt with user input.
|
||||
def get_prompt(mm_use_im_start_end, first_round, conv, user_input):
|
||||
if first_round:
|
||||
# first message
|
||||
if mm_use_im_start_end:
|
||||
user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
|
||||
DEFAULT_IM_END_TOKEN + '\n' + user_input
|
||||
else:
|
||||
user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input
|
||||
conv.append_message(conv.roles[0], user_input)
|
||||
else:
|
||||
# later messages
|
||||
conv.append_message(conv.roles[0], user_input)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
return conv.get_prompt()
|
||||
|
||||
def get_stopping_criteria(conv, tokenizer, input_ids):
|
||||
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||||
keywords = [stop_str]
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
return stopping_criteria
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Predict Tokens using `generate()` API for LLaVA model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-13b",
|
||||
help='The huggingface repo id for the LLaVA model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--image-path-or-url', type=str,
|
||||
required=True, help='Image path or url for the input image that the chat will focus on')
|
||||
parser.add_argument('--n-predict', type=int, default=512,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
model_name = get_model_name_from_path(model_path)
|
||||
|
||||
# Disable the redundant torch default initialization to accelerate model creation.
|
||||
disable_torch_init()
|
||||
|
||||
# Load model
|
||||
tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path,
|
||||
model_base=None,
|
||||
model_name=model_name)
|
||||
|
||||
# With only one line to enable BigDL-LLM optimization on model
|
||||
model = optimize_model(model)
|
||||
|
||||
# Genereate imgea tensor
|
||||
image_tensor = generate_image_tensor(args.image_path_or_url)
|
||||
|
||||
# Get conversation template and roles
|
||||
conv, roles = get_conv_and_role(model_name)
|
||||
|
||||
first_round = True
|
||||
while True:
|
||||
try:
|
||||
user_input = input(f"{roles[0]}: ")
|
||||
except EOFError:
|
||||
user_input = ""
|
||||
if not user_input:
|
||||
print("exit...")
|
||||
break
|
||||
|
||||
prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input)
|
||||
first_round = False
|
||||
input_ids = tokenizer_image_token(
|
||||
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0)
|
||||
stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids)
|
||||
|
||||
# Generate predicted tokens
|
||||
with torch.inference_mode():
|
||||
st = time.time()
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor,
|
||||
do_sample=True,
|
||||
max_new_tokens=args.n_predict,
|
||||
use_cache=True,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
end = time.time()
|
||||
#print(f'Inference time: {end-st} s')
|
||||
|
||||
outputs = tokenizer.decode(
|
||||
output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip()
|
||||
conv.messages[-1][-1] = outputs
|
||||
print(f"{roles[1]}: ", end="")
|
||||
print(outputs)
|
||||
Loading…
Reference in a new issue