add cpu example of LLaVA (#9269)

* add LLaVA cpu example

* Small text updates

* update link

---------

Co-authored-by: Yuwen Hu <yuwen.hu@intel.com>
This commit is contained in:
dingbaorong 2023-10-27 18:59:20 +08:00 committed by GitHub
parent 7f2ad182fd
commit f053688cad
5 changed files with 427 additions and 0 deletions

View file

@ -154,6 +154,8 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | |
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***

View file

@ -61,6 +61,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Phi-1_5 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-1_5) |
| Flan-t5 | [link](example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](example/GPU/HF-Transformers-AutoModels/Model/flan-t5) |
| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | |
| LLaVA | [link](example/CPU/PyTorch-Models/Model/llava) | |
### Working with `bigdl-llm`

View file

@ -13,6 +13,7 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
| Flan-t5 | [link](flan-t5) |
| Phi-1_5 | [link](phi-1_5) |
| Qwen-VL | [link](qwen-vl) |
| LLaVA | [link](llava) |
## Recommended Requirements
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).

View file

@ -0,0 +1,86 @@
# LLaVA
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on LLaVA models. For illustration purposes, we utilize the [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) as a reference LLaVA model.
## 0. Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Multi-turn chat centered around an image using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-trun chat centered around an image using `generate()` API, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
git clone -b v1.1.1 --depth=1 https://github.com/haotian-liu/LLaVA.git # clone the llava libary
pip install einops # install dependencies required by llava
cp generate.py ./LLaVA/ # copy our example to the LLaVA folder
cd LLaVA # change the working directory to the LLaVA folder
```
### 2. Run
After setting up the Python environment, you could run the example by following steps.
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the LLaVA model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#3-trouble-shooting) section.
#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg'
```
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
#### 2.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-13b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-13b'`.
- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`.
#### 2.4 Sample Output
#### [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b)
```log
USER: 你知道这幅画是谁画的吗?
ASSISTANT: 这幅画是由著名的文艺复兴画家达芬奇Leonardo da Vinci画的。该画是他的代表作之一是出自意大利佛罗伦萨的博物馆。画中的女子被认为是一位不为人知的模特而且画作可能还有一个人物底版这可能使得这幅画的价值更高。
```
The sample inpuit image is:
<a href="https://llava-vl.github.io/static/images/monalisa.jpg"><img width=250px src="https://llava-vl.github.io/static/images/monalisa.jpg" ></a>
### 3. Trouble shooting
#### 3.1 SSLError
If you encounter the following output, it means your machine has some trouble accessing huggingface.co.
```log
requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"),
```
You can resolve this problem with the following steps:
1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example.
2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example.

View file

@ -0,0 +1,337 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py
# and
# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py
#
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
import time
from transformers import AutoModelForCausalLM
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
from transformers import AutoTokenizer
from llava.constants import (
DEFAULT_IMAGE_PATCH_TOKEN,
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
KeywordsStoppingCriteria
)
from bigdl.llm import optimize_model
# Lod the pretained model.
# Adapted from llava.model.builder.load_pretrained_model.
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False,
device_map="auto", device="cpu"):
kwargs = {"device_map": device_map}
kwargs['torch_dtype'] = torch.float32
if 'llava' in model_name.lower():
# Load LLaVA model
if 'lora' in model_name.lower() and model_base is None:
warnings.warn('There is `lora` in model name but no `model_base` is provided.'
'If you are loading a LoRA model, please provide the `model_base` argument'
'. Detailed instruction:'
'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
if 'lora' in model_name.lower() and model_base is not None:
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
print('Loading LLaVA from base model...')
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True,
config=lora_cfg_pretrained, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(
token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional LLaVA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path,
'non_lora_trainables.bin'),
map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(
model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith(
'base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith(
'model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None:
# this may be mm projector only
print('Loading LLaVA from base model...')
if 'mpt' in model_name.lower():
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(
model_path, 'configuration_mpt.py'))
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=True)
cfg_pretrained = AutoConfig.from_pretrained(
model_path, trust_remote_code=True)
model = LlavaMPTForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
model = LlavaLlamaForCausalLM.from_pretrained(
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
mm_projector_weights = torch.load(os.path.join(
model_path, 'mm_projector.bin'), map_location='cpu')
mm_projector_weights = {k: v.to(torch.float32)
for k, v in mm_projector_weights.items()}
model.load_state_dict(mm_projector_weights, strict=False)
else:
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=True)
model = LlavaMPTForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = LlavaLlamaForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(
model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto")
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print('Convert to FP32...')
model.to(torch.float32)
else:
use_fast = False
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, **kwargs)
image_processor = None
if 'llava' in model_name.lower():
mm_use_im_start_end = getattr(
model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(
model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens(
[DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float32)
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len
# Initialize conversation from templates and get conversation roles.
def get_conv_and_role(model_name):
if 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
conv = conv_templates[conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
return conv, roles
# Load image from a url or path.
def load_image(image_file):
import requests
from PIL import Image
from io import BytesIO
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def generate_image_tensor(image_file):
image = load_image(image_file)
model_cfg = {"image_aspect_ratio": 'pad'}
image_tensor = process_images([image], image_processor, model_cfg)
return image_tensor
# Generate input prompt with user input.
def get_prompt(mm_use_im_start_end, first_round, conv, user_input):
if first_round:
# first message
if mm_use_im_start_end:
user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \
DEFAULT_IM_END_TOKEN + '\n' + user_input
else:
user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input
conv.append_message(conv.roles[0], user_input)
else:
# later messages
conv.append_message(conv.roles[0], user_input)
conv.append_message(conv.roles[1], None)
return conv.get_prompt()
def get_stopping_criteria(conv, tokenizer, input_ids):
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
return stopping_criteria
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Predict Tokens using `generate()` API for LLaVA model')
parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-13b",
help='The huggingface repo id for the LLaVA model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-path-or-url', type=str,
required=True, help='Image path or url for the input image that the chat will focus on')
parser.add_argument('--n-predict', type=int, default=512,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model_name = get_model_name_from_path(model_path)
# Disable the redundant torch default initialization to accelerate model creation.
disable_torch_init()
# Load model
tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path,
model_base=None,
model_name=model_name)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Genereate imgea tensor
image_tensor = generate_image_tensor(args.image_path_or_url)
# Get conversation template and roles
conv, roles = get_conv_and_role(model_name)
first_round = True
while True:
try:
user_input = input(f"{roles[0]}: ")
except EOFError:
user_input = ""
if not user_input:
print("exit...")
break
prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input)
first_round = False
input_ids = tokenizer_image_token(
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0)
stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids)
# Generate predicted tokens
with torch.inference_mode():
st = time.time()
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
max_new_tokens=args.n_predict,
use_cache=True,
stopping_criteria=[stopping_criteria])
end = time.time()
#print(f'Inference time: {end-st} s')
outputs = tokenizer.decode(
output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip()
conv.messages[-1][-1] = outputs
print(f"{roles[1]}: ", end="")
print(outputs)