Refactor qwen2 moe (#11244)
This commit is contained in:
		
							parent
							
								
									7b753dc8ca
								
							
						
					
					
						commit
						ef8e9b2ecd
					
				
					 2 changed files with 40 additions and 475 deletions
				
			
		| 
						 | 
					@ -713,6 +713,9 @@ def _optimize_pre(model):
 | 
				
			||||||
    if model.config.model_type == "qwen2":
 | 
					    if model.config.model_type == "qwen2":
 | 
				
			||||||
        from ipex_llm.transformers.models.qwen2 import merge_qkv
 | 
					        from ipex_llm.transformers.models.qwen2 import merge_qkv
 | 
				
			||||||
        model.apply(merge_qkv)
 | 
					        model.apply(merge_qkv)
 | 
				
			||||||
 | 
					    if model.config.model_type == "qwen2_moe":
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2_moe import merge_qkv
 | 
				
			||||||
 | 
					        model.apply(merge_qkv)
 | 
				
			||||||
    if model.config.model_type == "stablelm":
 | 
					    if model.config.model_type == "stablelm":
 | 
				
			||||||
        # For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
 | 
					        # For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
 | 
				
			||||||
        from ipex_llm.transformers.models.stablelm import merge_qkv
 | 
					        from ipex_llm.transformers.models.stablelm import merge_qkv
 | 
				
			||||||
| 
						 | 
					@ -1305,8 +1308,8 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
        modeling_module_name = model.__class__.__module__
 | 
					        modeling_module_name = model.__class__.__module__
 | 
				
			||||||
        module = importlib.import_module(modeling_module_name)
 | 
					        module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
        from ipex_llm.transformers.models.qwen2_moe import qwen2moe_moeblock_forward
 | 
					        from ipex_llm.transformers.models.qwen2_moe import qwen2moe_moeblock_forward
 | 
				
			||||||
        from ipex_llm.transformers.models.qwen2_moe import qwen2moe_attention_forward
 | 
					 | 
				
			||||||
        from ipex_llm.transformers.models.qwen2_moe import qwen2moe_model_forward
 | 
					        from ipex_llm.transformers.models.qwen2_moe import qwen2moe_model_forward
 | 
				
			||||||
 | 
					        from ipex_llm.transformers.models.qwen2 import qwen2_attention_forward
 | 
				
			||||||
        convert_forward(model,
 | 
					        convert_forward(model,
 | 
				
			||||||
                        module.Qwen2MoeModel,
 | 
					                        module.Qwen2MoeModel,
 | 
				
			||||||
                        qwen2moe_model_forward)
 | 
					                        qwen2moe_model_forward)
 | 
				
			||||||
| 
						 | 
					@ -1321,7 +1324,10 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                        llama_mlp_forward)
 | 
					                        llama_mlp_forward)
 | 
				
			||||||
        convert_forward(model,
 | 
					        convert_forward(model,
 | 
				
			||||||
                        module.Qwen2MoeAttention,
 | 
					                        module.Qwen2MoeAttention,
 | 
				
			||||||
                        qwen2moe_attention_forward)
 | 
					                        qwen2_attention_forward)
 | 
				
			||||||
 | 
					        convert_forward(model,
 | 
				
			||||||
 | 
					                        module.Qwen2MoeSdpaAttention,
 | 
				
			||||||
 | 
					                        qwen2_attention_forward)
 | 
				
			||||||
    elif model.config.model_type == "cohere":
 | 
					    elif model.config.model_type == "cohere":
 | 
				
			||||||
        # for CohereForAI/c4ai-command-r-v01
 | 
					        # for CohereForAI/c4ai-command-r-v01
 | 
				
			||||||
        modeling_module_name = model.__class__.__module__
 | 
					        modeling_module_name = model.__class__.__module__
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -37,39 +37,20 @@
 | 
				
			||||||
# limitations under the License.
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
""" PyTorch Qwen2MoE model."""
 | 
					""" PyTorch Qwen2MoE model."""
 | 
				
			||||||
import math
 | 
					 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.nn.functional as F
 | 
					import torch.nn.functional as F
 | 
				
			||||||
import torch.nn as nn
 | 
					 | 
				
			||||||
import torch.utils.checkpoint
 | 
					import torch.utils.checkpoint
 | 
				
			||||||
import warnings
 | 
					from typing import Optional, Tuple, Union, List
 | 
				
			||||||
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
 | 
					 | 
				
			||||||
from ipex_llm.transformers.models.llama import repeat_kv
 | 
					 | 
				
			||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
					 | 
				
			||||||
from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache
 | 
					 | 
				
			||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
 | 
					 | 
				
			||||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
 | 
					 | 
				
			||||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
 | 
					 | 
				
			||||||
from ipex_llm.utils.common import invalidInputError
 | 
					from ipex_llm.utils.common import invalidInputError
 | 
				
			||||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
 | 
					from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
				
			||||||
from ipex_llm.transformers.models.utils import use_flash_attention
 | 
					from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
 | 
				
			||||||
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeModel, apply_rotary_pos_emb
 | 
					 | 
				
			||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
					 | 
				
			||||||
from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
import os
 | 
					from transformers.models.qwen2_moe.modeling_qwen2_moe import (
 | 
				
			||||||
 | 
					    _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask,
 | 
				
			||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
 | 
					    Qwen2MoeAttention,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
 | 
					 | 
				
			||||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
 | 
					 | 
				
			||||||
from transformers.modeling_outputs import MoeModelOutputWithPast
 | 
					from transformers.modeling_outputs import MoeModelOutputWithPast
 | 
				
			||||||
 | 
					from transformers.cache_utils import Cache, DynamicCache
 | 
				
			||||||
try:
 | 
					 | 
				
			||||||
    from transformers.cache_utils import Cache, DynamicCache
 | 
					 | 
				
			||||||
except ImportError:
 | 
					 | 
				
			||||||
    Cache = Tuple[torch.Tensor]
 | 
					 | 
				
			||||||
import logging
 | 
					 | 
				
			||||||
from transformers import logging
 | 
					from transformers import logging
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -90,9 +71,12 @@ def qwen2moe_model_forward(
 | 
				
			||||||
    return_dict: Optional[bool] = None,
 | 
					    return_dict: Optional[bool] = None,
 | 
				
			||||||
):
 | 
					):
 | 
				
			||||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
					    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
				
			||||||
    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.shared_expert.up_proj, input_ids):
 | 
					    use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.shared_expert.up_proj, input_ids)
 | 
				
			||||||
        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
					    if use_cache:
 | 
				
			||||||
 | 
					        if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
 | 
				
			||||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
					            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
				
			||||||
 | 
					        if not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
 | 
				
			||||||
 | 
					            past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
				
			||||||
    return qwen2_moe_model_forward_internal(
 | 
					    return qwen2_moe_model_forward_internal(
 | 
				
			||||||
        self=self,
 | 
					        self=self,
 | 
				
			||||||
        input_ids=input_ids,
 | 
					        input_ids=input_ids,
 | 
				
			||||||
| 
						 | 
					@ -290,452 +274,27 @@ def qwen2_moe_model_forward_internal(
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def qwen2moe_attention_forward(
 | 
					def merge_qkv(module: torch.nn.Module):
 | 
				
			||||||
    self,
 | 
					    if isinstance(module, Qwen2MoeAttention):
 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					        new_weight = torch.cat([
 | 
				
			||||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
					            module.q_proj.weight.data,
 | 
				
			||||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
					            module.k_proj.weight.data,
 | 
				
			||||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
					            module.v_proj.weight.data,
 | 
				
			||||||
    output_attentions: bool = False,
 | 
					        ], dim=0)
 | 
				
			||||||
    use_cache: bool = False,
 | 
					        new_bias = torch.cat([
 | 
				
			||||||
    **kwargs,
 | 
					            module.q_proj.bias.data,
 | 
				
			||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
					            module.k_proj.bias.data,
 | 
				
			||||||
    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
					            module.v_proj.bias.data,
 | 
				
			||||||
        forward_function = qwen2moe_attention_forward_quantized
 | 
					        ], dim=-1)
 | 
				
			||||||
    elif hidden_states.device.type == "cpu":
 | 
					 | 
				
			||||||
        forward_function = qwen2moe_attention_forward_sdpa
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        forward_function = qwen2moe_attention_forward_origin
 | 
					 | 
				
			||||||
    return forward_function(
 | 
					 | 
				
			||||||
        self=self,
 | 
					 | 
				
			||||||
        hidden_states=hidden_states,
 | 
					 | 
				
			||||||
        attention_mask=attention_mask,
 | 
					 | 
				
			||||||
        position_ids=position_ids,
 | 
					 | 
				
			||||||
        past_key_value=past_key_value,
 | 
					 | 
				
			||||||
        output_attentions=output_attentions,
 | 
					 | 
				
			||||||
        use_cache=use_cache,
 | 
					 | 
				
			||||||
        **kwargs,
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        qkv_proj = torch.nn.Linear(0, 0, bias=True)
 | 
				
			||||||
 | 
					        qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
 | 
				
			||||||
 | 
					        qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
 | 
				
			||||||
 | 
					        qkv_proj.in_features = new_weight.size(1)
 | 
				
			||||||
 | 
					        qkv_proj.out_features = new_weight.size(0)
 | 
				
			||||||
 | 
					        module.qkv_proj = qkv_proj
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def qwen2moe_attention_forward_quantized(
 | 
					        del module.q_proj, module.k_proj, module.v_proj
 | 
				
			||||||
    self,
 | 
					 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					 | 
				
			||||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
					 | 
				
			||||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
					 | 
				
			||||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
					 | 
				
			||||||
    output_attentions: bool = False,
 | 
					 | 
				
			||||||
    use_cache: bool = False,
 | 
					 | 
				
			||||||
    **kwargs,
 | 
					 | 
				
			||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
					 | 
				
			||||||
    if "padding_mask" in kwargs:
 | 
					 | 
				
			||||||
        warnings.warn(
 | 
					 | 
				
			||||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37."
 | 
					 | 
				
			||||||
            "Please make sure use `attention_mask` instead.`"
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
    use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
 | 
					 | 
				
			||||||
    bsz, q_len, _ = hidden_states.size()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    query_states = self.q_proj(hidden_states)
 | 
					 | 
				
			||||||
    key_states = self.k_proj(hidden_states)
 | 
					 | 
				
			||||||
    value_states = self.v_proj(hidden_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    query_states = query_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                     self.num_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
    key_states = key_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                 self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
    value_states = value_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    kv_seq_len = key_states.shape[-2]
 | 
					 | 
				
			||||||
    if past_key_value is not None:
 | 
					 | 
				
			||||||
        invalidInputError(self.layer_idx is not None,
 | 
					 | 
				
			||||||
                          "The cache structure has changed since version v4.36. "
 | 
					 | 
				
			||||||
                          f"If you are using {self.__class__.__name__} "
 | 
					 | 
				
			||||||
                          "for auto-regressive decoding with k/v caching, "
 | 
					 | 
				
			||||||
                          "please make sure to initialize the attention class "
 | 
					 | 
				
			||||||
                          "with a layer index.")
 | 
					 | 
				
			||||||
        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
					 | 
				
			||||||
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if use_fuse_rope:
 | 
					 | 
				
			||||||
        query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
					 | 
				
			||||||
                                                                       sin, cos, "qwen2_moe",
 | 
					 | 
				
			||||||
                                                                       position_ids)
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
					 | 
				
			||||||
                                                        cos, sin, position_ids)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if past_key_value is not None:
 | 
					 | 
				
			||||||
        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
 | 
					 | 
				
			||||||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
					 | 
				
			||||||
                                                         self.layer_idx, cache_kwargs)
 | 
					 | 
				
			||||||
    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
					 | 
				
			||||||
            and not hidden_states.requires_grad:
 | 
					 | 
				
			||||||
        import xe_addons
 | 
					 | 
				
			||||||
        attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        key_states, value_states = restore_fp8_kv_cache(key_states,
 | 
					 | 
				
			||||||
                                                        value_states, query_states.dtype)
 | 
					 | 
				
			||||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
					 | 
				
			||||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
					 | 
				
			||||||
                      ("Attention weights should be of size "
 | 
					 | 
				
			||||||
                       f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
					 | 
				
			||||||
                       "but is {attn_weights.size()}"))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if attention_mask is not None:
 | 
					 | 
				
			||||||
        invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
					 | 
				
			||||||
                          (f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
 | 
					 | 
				
			||||||
                           f" but is {attention_mask.size()}"))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        attn_weights = attn_weights + attention_mask
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # upcast attention to fp32
 | 
					 | 
				
			||||||
    attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
					 | 
				
			||||||
                                         dtype=torch.float32).to(query_states.dtype)
 | 
					 | 
				
			||||||
    attn_weights = nn.functional.dropout(attn_weights,
 | 
					 | 
				
			||||||
                                         p=self.attention_dropout, training=self.training)
 | 
					 | 
				
			||||||
    if q_len == 1 and query_states.device.type == 'xpu' and not self.training \
 | 
					 | 
				
			||||||
            and not hidden_states.requires_grad:
 | 
					 | 
				
			||||||
        import xe_addons
 | 
					 | 
				
			||||||
        attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
					 | 
				
			||||||
                      "`attn_output` should be of size "
 | 
					 | 
				
			||||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
					 | 
				
			||||||
                      f" but is {attn_output.size()}")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					 | 
				
			||||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_output = self.o_proj(attn_output)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if not output_attentions:
 | 
					 | 
				
			||||||
        attn_weights = None
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return attn_output, attn_weights, past_key_value
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def qwen2moe_attention_forward_origin(
 | 
					 | 
				
			||||||
    self,
 | 
					 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					 | 
				
			||||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
					 | 
				
			||||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
					 | 
				
			||||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
					 | 
				
			||||||
    output_attentions: bool = False,
 | 
					 | 
				
			||||||
    use_cache: bool = False,
 | 
					 | 
				
			||||||
    **kwargs,
 | 
					 | 
				
			||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
					 | 
				
			||||||
    use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if "padding_mask" in kwargs:
 | 
					 | 
				
			||||||
        warnings.warn(
 | 
					 | 
				
			||||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
					 | 
				
			||||||
            "Please make sure use `attention_mask` instead.`"
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
    bsz, q_len, _ = hidden_states.size()
 | 
					 | 
				
			||||||
    device = hidden_states.device
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    qtype_check = decoding_fast_path_qtype_check(self.q_proj)
 | 
					 | 
				
			||||||
    decoding_fast_path = (qtype_check and use_fuse_rope
 | 
					 | 
				
			||||||
                          and enough_kv_room and bsz * q_len == 1)
 | 
					 | 
				
			||||||
    decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
 | 
					 | 
				
			||||||
    if decoding_fast_path:
 | 
					 | 
				
			||||||
        hidden_states = hidden_states.view(1, -1)
 | 
					 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					 | 
				
			||||||
        import xe_linear
 | 
					 | 
				
			||||||
        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
					 | 
				
			||||||
                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
					 | 
				
			||||||
                cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
 | 
					 | 
				
			||||||
                self.head_dim, self.rotary_emb.base]
 | 
					 | 
				
			||||||
        query_states, key_states, value_states = xe_linear.forward_qkv_bias(*args)
 | 
					 | 
				
			||||||
        kv_seq_len += 1
 | 
					 | 
				
			||||||
        if self.layer_idx == 0:
 | 
					 | 
				
			||||||
            past_key_value._seen_tokens = kv_seq_len
 | 
					 | 
				
			||||||
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
					 | 
				
			||||||
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        query_states = self.q_proj(hidden_states)
 | 
					 | 
				
			||||||
        key_states = self.k_proj(hidden_states)
 | 
					 | 
				
			||||||
        value_states = self.v_proj(hidden_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        query_states = query_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
        key_states = key_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
        value_states = value_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        kv_seq_len = key_states.shape[-2]
 | 
					 | 
				
			||||||
        if past_key_value is not None:
 | 
					 | 
				
			||||||
            if self.layer_idx is None:
 | 
					 | 
				
			||||||
                invalidInputError(
 | 
					 | 
				
			||||||
                    False,
 | 
					 | 
				
			||||||
                    "The cache structure has changed since version v4.36. "
 | 
					 | 
				
			||||||
                    f"If you are using {self.__class__.__name__} "
 | 
					 | 
				
			||||||
                    "for auto-regressive decoding with k/v caching, "
 | 
					 | 
				
			||||||
                    "please make sure to initialize the attention class with a layer index."
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
					 | 
				
			||||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
					 | 
				
			||||||
        if use_fuse_rope:
 | 
					 | 
				
			||||||
            query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
					 | 
				
			||||||
                                                                           sin, cos, "qwen2_moe",
 | 
					 | 
				
			||||||
                                                                           position_ids)
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
					 | 
				
			||||||
                                                            cos, sin, position_ids)
 | 
					 | 
				
			||||||
        if past_key_value is not None:
 | 
					 | 
				
			||||||
            if self.layer_idx == 0:
 | 
					 | 
				
			||||||
                past_key_value._seen_tokens += key_states.shape[-2]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
					 | 
				
			||||||
                past_key_value.key_cache.append(key_states)
 | 
					 | 
				
			||||||
                past_key_value.value_cache.append(value_states)
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					 | 
				
			||||||
                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                if not enough_kv_room:
 | 
					 | 
				
			||||||
                    # allocate new
 | 
					 | 
				
			||||||
                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
					 | 
				
			||||||
                                                       self.num_key_value_heads,  # Support GQA
 | 
					 | 
				
			||||||
                                                       self.head_dim,
 | 
					 | 
				
			||||||
                                                       cache_k.size(2),
 | 
					 | 
				
			||||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
					 | 
				
			||||||
                                                       dtype=cache_k.dtype,
 | 
					 | 
				
			||||||
                                                       device=device)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                    new_c_k[:] = cache_k
 | 
					 | 
				
			||||||
                    new_c_v[:] = cache_v
 | 
					 | 
				
			||||||
                    cache_k = new_c_k
 | 
					 | 
				
			||||||
                    cache_v = new_c_v
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                key_states, value_states = append_kv_cache(cache_k,
 | 
					 | 
				
			||||||
                                                           cache_v,
 | 
					 | 
				
			||||||
                                                           key_states,
 | 
					 | 
				
			||||||
                                                           value_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                # update past_key_value
 | 
					 | 
				
			||||||
                past_key_value.key_cache[self.layer_idx] = key_states
 | 
					 | 
				
			||||||
                past_key_value.value_cache[self.layer_idx] = value_states
 | 
					 | 
				
			||||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
					 | 
				
			||||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if not self.training and not hidden_states.requires_grad and \
 | 
					 | 
				
			||||||
            use_flash_attention(query_states, key_states, attention_mask):
 | 
					 | 
				
			||||||
        attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
 | 
					 | 
				
			||||||
                                                     key_states.to(device, dtype=torch.float16),
 | 
					 | 
				
			||||||
                                                     value_states.to(device, dtype=torch.float16),
 | 
					 | 
				
			||||||
                                                     is_causal=True)
 | 
					 | 
				
			||||||
        attn_weights = None
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        attn_weights = torch.matmul(query_states,
 | 
					 | 
				
			||||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
					 | 
				
			||||||
                          ("Attention weights should be of size "
 | 
					 | 
				
			||||||
                           f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
					 | 
				
			||||||
                           "but is {attn_weights.size()}"))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        if attention_mask is not None:
 | 
					 | 
				
			||||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
					 | 
				
			||||||
                              (f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
 | 
					 | 
				
			||||||
                               f" but is {attention_mask.size()}"))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            attn_weights = attn_weights + attention_mask
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # upcast attention to fp32
 | 
					 | 
				
			||||||
        attn_weights = nn.functional.softmax(attn_weights,
 | 
					 | 
				
			||||||
                                             dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
					 | 
				
			||||||
        attn_weights = nn.functional.dropout(attn_weights,
 | 
					 | 
				
			||||||
                                             p=self.attention_dropout, training=self.training)
 | 
					 | 
				
			||||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
					 | 
				
			||||||
                      "`attn_output` should be of size "
 | 
					 | 
				
			||||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
					 | 
				
			||||||
                      f" but is {attn_output.size()}")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					 | 
				
			||||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_output = self.o_proj(attn_output)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if not output_attentions:
 | 
					 | 
				
			||||||
        attn_weights = None
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def qwen2moe_attention_forward_sdpa(
 | 
					 | 
				
			||||||
    self,
 | 
					 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					 | 
				
			||||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
					 | 
				
			||||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
					 | 
				
			||||||
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
					 | 
				
			||||||
    output_attentions: bool = False,
 | 
					 | 
				
			||||||
    use_cache: bool = False,
 | 
					 | 
				
			||||||
    **kwargs,
 | 
					 | 
				
			||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
					 | 
				
			||||||
    use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if "padding_mask" in kwargs:
 | 
					 | 
				
			||||||
        warnings.warn(
 | 
					 | 
				
			||||||
            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
					 | 
				
			||||||
            "Please make sure use `attention_mask` instead.`"
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
    bsz, q_len, _ = hidden_states.size()
 | 
					 | 
				
			||||||
    device = hidden_states.device
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    qtype_check = decoding_fast_path_qtype_check(self.q_proj)
 | 
					 | 
				
			||||||
    decoding_fast_path = (qtype_check and use_fuse_rope
 | 
					 | 
				
			||||||
                          and enough_kv_room and bsz * q_len == 1)
 | 
					 | 
				
			||||||
    decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
 | 
					 | 
				
			||||||
    if decoding_fast_path:
 | 
					 | 
				
			||||||
        hidden_states = hidden_states.view(1, -1)
 | 
					 | 
				
			||||||
        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					 | 
				
			||||||
        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					 | 
				
			||||||
        kv_seq_len = cache_k.shape[-2]
 | 
					 | 
				
			||||||
        import xe_linear
 | 
					 | 
				
			||||||
        args = [hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight,
 | 
					 | 
				
			||||||
                self.q_proj.bias, self.k_proj.bias, self.v_proj.bias, position_ids, cache_k,
 | 
					 | 
				
			||||||
                cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len,
 | 
					 | 
				
			||||||
                self.head_dim, self.rotary_emb.base]
 | 
					 | 
				
			||||||
        query_states, key_states, value_states = xe_linear.forward_qkv_bias(*args)
 | 
					 | 
				
			||||||
        kv_seq_len += 1
 | 
					 | 
				
			||||||
        if self.layer_idx == 0:
 | 
					 | 
				
			||||||
            past_key_value._seen_tokens = kv_seq_len
 | 
					 | 
				
			||||||
        past_key_value.key_cache[self.layer_idx] = key_states
 | 
					 | 
				
			||||||
        past_key_value.value_cache[self.layer_idx] = value_states
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        query_states = self.q_proj(hidden_states)
 | 
					 | 
				
			||||||
        key_states = self.k_proj(hidden_states)
 | 
					 | 
				
			||||||
        value_states = self.v_proj(hidden_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        query_states = query_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
        key_states = key_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
        value_states = value_states.view(bsz, q_len,
 | 
					 | 
				
			||||||
                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        kv_seq_len = key_states.shape[-2]
 | 
					 | 
				
			||||||
        if past_key_value is not None:
 | 
					 | 
				
			||||||
            if self.layer_idx is None:
 | 
					 | 
				
			||||||
                invalidInputError(
 | 
					 | 
				
			||||||
                    False,
 | 
					 | 
				
			||||||
                    "The cache structure has changed since version v4.36. "
 | 
					 | 
				
			||||||
                    f"If you are using {self.__class__.__name__} "
 | 
					 | 
				
			||||||
                    "for auto-regressive decoding with k/v caching, "
 | 
					 | 
				
			||||||
                    "please make sure to initialize the attention class with a layer index."
 | 
					 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
					 | 
				
			||||||
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
					 | 
				
			||||||
        if use_fuse_rope:
 | 
					 | 
				
			||||||
            query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states,
 | 
					 | 
				
			||||||
                                                                           sin, cos, "qwen2_moe",
 | 
					 | 
				
			||||||
                                                                           position_ids)
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
					 | 
				
			||||||
                                                            cos, sin, position_ids)
 | 
					 | 
				
			||||||
        if past_key_value is not None:
 | 
					 | 
				
			||||||
            if self.layer_idx == 0:
 | 
					 | 
				
			||||||
                past_key_value._seen_tokens += key_states.shape[-2]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
					 | 
				
			||||||
                past_key_value.key_cache.append(key_states)
 | 
					 | 
				
			||||||
                past_key_value.value_cache.append(value_states)
 | 
					 | 
				
			||||||
            else:
 | 
					 | 
				
			||||||
                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
					 | 
				
			||||||
                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                if not enough_kv_room:
 | 
					 | 
				
			||||||
                    # allocate new
 | 
					 | 
				
			||||||
                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
					 | 
				
			||||||
                                                       self.num_key_value_heads,  # Support GQA
 | 
					 | 
				
			||||||
                                                       self.head_dim,
 | 
					 | 
				
			||||||
                                                       cache_k.size(2),
 | 
					 | 
				
			||||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
					 | 
				
			||||||
                                                       dtype=cache_k.dtype,
 | 
					 | 
				
			||||||
                                                       device=device)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                    new_c_k[:] = cache_k
 | 
					 | 
				
			||||||
                    new_c_v[:] = cache_v
 | 
					 | 
				
			||||||
                    cache_k = new_c_k
 | 
					 | 
				
			||||||
                    cache_v = new_c_v
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                key_states, value_states = append_kv_cache(cache_k,
 | 
					 | 
				
			||||||
                                                           cache_v,
 | 
					 | 
				
			||||||
                                                           key_states,
 | 
					 | 
				
			||||||
                                                           value_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
                # update past_key_value
 | 
					 | 
				
			||||||
                past_key_value.key_cache[self.layer_idx] = key_states
 | 
					 | 
				
			||||||
                past_key_value.value_cache[self.layer_idx] = value_states
 | 
					 | 
				
			||||||
    # repeat k/v heads if n_kv_heads < n_heads
 | 
					 | 
				
			||||||
    key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
    value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if output_attentions:
 | 
					 | 
				
			||||||
        attn_weights = torch.matmul(query_states,
 | 
					 | 
				
			||||||
                                    key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
					 | 
				
			||||||
                          ("Attention weights should be of size "
 | 
					 | 
				
			||||||
                           f"{(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
					 | 
				
			||||||
                           "but is {attn_weights.size()}"))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        if attention_mask is not None:
 | 
					 | 
				
			||||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
					 | 
				
			||||||
                              (f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}"
 | 
					 | 
				
			||||||
                               f" but is {attention_mask.size()}"))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
            attn_weights = attn_weights + attention_mask
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        # upcast attention to fp32
 | 
					 | 
				
			||||||
        attn_weights = nn.functional.softmax(attn_weights,
 | 
					 | 
				
			||||||
                                             dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
					 | 
				
			||||||
        attn_weights = nn.functional.dropout(attn_weights,
 | 
					 | 
				
			||||||
                                             p=self.attention_dropout, training=self.training)
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        attn_weights = None
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    from torch.nn.functional import scaled_dot_product_attention as sdpa
 | 
					 | 
				
			||||||
    attn_output = sdpa(query_states,
 | 
					 | 
				
			||||||
                       key_states,
 | 
					 | 
				
			||||||
                       value_states,
 | 
					 | 
				
			||||||
                       attn_mask=attention_mask,
 | 
					 | 
				
			||||||
                       dropout_p=self.attention_dropout if self.training else 0.0,
 | 
					 | 
				
			||||||
                       is_causal=self.is_causal and attention_mask is None and q_len > 1)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
					 | 
				
			||||||
                      "`attn_output` should be of size "
 | 
					 | 
				
			||||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
					 | 
				
			||||||
                      f" but is {attn_output.size()}")
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
					 | 
				
			||||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    attn_output = self.o_proj(attn_output)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return attn_output, attn_weights, past_key_value
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def qwen2moe_moeblock_forward(self, hidden_states: torch.Tensor):
 | 
					def qwen2moe_moeblock_forward(self, hidden_states: torch.Tensor):
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue