[LLM] chatglm pybinding support (#8672)
This commit is contained in:
parent
5837cc424a
commit
ef08250c21
4 changed files with 470 additions and 2 deletions
|
|
@ -80,7 +80,7 @@ windows_binarys = [
|
|||
"quantize-gptneox_vnni.exe",
|
||||
"quantize-bloom_vnni.exe",
|
||||
"quantize-starcoder_vnni.exe",
|
||||
|
||||
|
||||
"main-chatglm_vnni.exe",
|
||||
]
|
||||
linux_binarys = [
|
||||
|
|
@ -112,7 +112,7 @@ linux_binarys = [
|
|||
"main-gptneox",
|
||||
"main-bloom",
|
||||
"main-starcoder",
|
||||
|
||||
|
||||
"main-chatglm_vnni",
|
||||
]
|
||||
|
||||
|
|
@ -220,6 +220,7 @@ def setup_package():
|
|||
print(f"Deleting existing libs_dir {libs_dir} ....")
|
||||
shutil.rmtree(libs_dir)
|
||||
os.makedirs(libs_dir, exist_ok=True)
|
||||
open(os.path.join(libs_dir, "__init__.py"), 'w').close()
|
||||
|
||||
# copy built files for github workflow
|
||||
for built_file in glob.glob(os.path.join(github_artifact_dir, '*')):
|
||||
|
|
|
|||
20
python/llm/src/bigdl/llm/ggml/model/chatglm/__init__.py
Normal file
20
python/llm/src/bigdl/llm/ggml/model/chatglm/__init__.py
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
373
python/llm/src/bigdl/llm/ggml/model/chatglm/chatglm.py
Normal file
373
python/llm/src/bigdl/llm/ggml/model/chatglm/chatglm.py
Normal file
|
|
@ -0,0 +1,373 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# ===========================================================================
|
||||
#
|
||||
# This file is adapted from
|
||||
# https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama.py
|
||||
#
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2023 Andrei Betlen
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
|
||||
from .chatglm_cpp import chatglm_load, chatglm_tokenize, chatglm_detokenize, chatglm_eval, \
|
||||
chatglm_eos_token
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.ggml.model.generation import GenerationMixin
|
||||
from typing import List, Optional, Generator, Sequence, Union
|
||||
import time
|
||||
import uuid
|
||||
import warnings
|
||||
|
||||
|
||||
class ChatGLM:
|
||||
"""High-level Python wrapper for a chatglm.cpp model."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_path: str,
|
||||
n_ctx: int = 512,
|
||||
n_parts: int = -1,
|
||||
n_gpu_layers: int = 0,
|
||||
seed: int = -1,
|
||||
f16_kv: bool = True,
|
||||
logits_all: bool = False,
|
||||
vocab_only: bool = False,
|
||||
use_mmap: bool = False,
|
||||
use_mlock: bool = False,
|
||||
embedding: bool = False,
|
||||
n_threads: Optional[int] = 2,
|
||||
n_batch: int = 512,
|
||||
last_n_tokens_size: int = 64,
|
||||
lora_base: Optional[str] = None,
|
||||
lora_path: Optional[str] = None,
|
||||
verbose: bool = True,
|
||||
):
|
||||
"""Load a chatglm.cpp model from `model_path`.
|
||||
|
||||
Args:
|
||||
model_path: Path to the model.
|
||||
n_ctx: Maximum context size.
|
||||
n_parts: Number of parts to split the model into. If -1, the number of parts
|
||||
is automatically determined.
|
||||
seed: Random seed. For default value -1, current timestamp is used as seed.
|
||||
f16_kv: Use half-precision for key/value cache.
|
||||
logits_all: Return logits for all tokens, not just the last token.
|
||||
vocab_only: Only load the vocabulary no weights.
|
||||
use_mmap: Use mmap if possible.
|
||||
use_mlock: Force the system to keep the model in RAM.
|
||||
embedding: Embedding mode only.
|
||||
n_threads: Number of threads to use. Default to be 2.
|
||||
n_batch: Maximum number of prompt tokens to batch together when calling chatglm_eval.
|
||||
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||
lora_base: Optional path to base model, useful if using a quantized base model and
|
||||
you want to apply LoRA to an f16 model.
|
||||
lora_path: Path to a LoRA file to apply to the model.
|
||||
verbose: Print verbose output to stderr.
|
||||
|
||||
Raises:
|
||||
ValueError: If the model path does not exist.
|
||||
|
||||
Returns:
|
||||
A ChatGLM instance.
|
||||
"""
|
||||
|
||||
self.model_path = model_path
|
||||
self.ctx = chatglm_load(model_path, use_mmap=use_mmap, n_ctx=n_ctx, n_threads=n_threads)
|
||||
self.n_ctx = n_ctx
|
||||
self.n_parts = n_parts
|
||||
self.n_gpu_layers = n_gpu_layers
|
||||
self.f16_kv = f16_kv
|
||||
self.seed = seed
|
||||
self.logits_all = logits_all
|
||||
self.vocab_only = vocab_only
|
||||
self.use_mmap = use_mmap
|
||||
self.use_mlock = use_mlock
|
||||
self.embedding = embedding
|
||||
self.n_threads = n_threads
|
||||
self.n_batch = n_batch
|
||||
self.last_n_tokens_size = last_n_tokens_size
|
||||
self.lora_base = lora_base
|
||||
self.lora_path = lora_path
|
||||
self.verbose = verbose
|
||||
# TODO: Some parameters are temporarily not supported
|
||||
unsupported_arg = {'n_parts': -1, 'n_gpu_layers': 0, 'f16_kv': True, 'logits_all': False,
|
||||
'vocab_only': False, 'use_mlock': False, 'embedding': False,
|
||||
'n_batch': 512, 'last_n_tokens_size': 64, 'lora_base': None,
|
||||
'lora_path': None, 'verbose': True}
|
||||
for arg in unsupported_arg.keys():
|
||||
if getattr(self, arg) != unsupported_arg[arg]:
|
||||
warnings.warn(f"The parameter {arg} is temporarily unsupported, "
|
||||
"please use the default value.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
prompt: str,
|
||||
suffix: Optional[str] = None,
|
||||
max_tokens: int = 128,
|
||||
temperature: float = 0.95,
|
||||
top_p: float = 0.7,
|
||||
logprobs: Optional[int] = None,
|
||||
echo: bool = False,
|
||||
stop: Optional[Union[str, List[str]]]=[],
|
||||
frequency_penalty: float = 0.0,
|
||||
presence_penalty: float = 0.0,
|
||||
repeat_penalty: float = 1.1,
|
||||
top_k: int = 0,
|
||||
stream: bool = False,
|
||||
tfs_z: float = 1.0,
|
||||
mirostat_mode: int = 0,
|
||||
mirostat_tau: float = 5.0,
|
||||
mirostat_eta: float = 0.1,
|
||||
model: Optional[str] = None,
|
||||
):
|
||||
# TODO: Some parameters are temporarily not supported
|
||||
# Unsupported parameters are checked in `_supported_call`
|
||||
return self._supported_call(prompt, max_tokens, stream, temperature, top_p, top_k,
|
||||
stop, model, suffix, logprobs, echo, frequency_penalty,
|
||||
presence_penalty, repeat_penalty, tfs_z, mirostat_mode,
|
||||
mirostat_tau, mirostat_eta)
|
||||
|
||||
def _supported_call(self, prompt: str, max_tokens: int, stream: bool,
|
||||
temperature: float, top_p: float, top_k: int,
|
||||
stop: Optional[List[str]] = [], model: Optional[str] = None, *args):
|
||||
# Check unsupporeted parameters
|
||||
unsupported_arg = ['suffix', 'logprobs', 'echo',
|
||||
'frequency_penalty', 'presence_penalty', 'repeat_penalty',
|
||||
'tfs_z', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'model']
|
||||
defult_value = {'suffix': None, 'logprobs': None, 'echo': False,
|
||||
'frequency_penalty': 0.0, 'presence_penalty': 0.0,
|
||||
'repeat_penalty': 1.1, 'tfs_z': 1.0, 'mirostat_mode': 0,
|
||||
'mirostat_tau': 5.0, 'mirostat_eta': 0.1}
|
||||
for index in range(len(args)):
|
||||
if args[index] != defult_value[unsupported_arg[index]]:
|
||||
warnings.warn(f"The parameter {unsupported_arg[index]} is temporarily "
|
||||
"unsupported, please use the default value.")
|
||||
|
||||
if stream:
|
||||
return self.stream(prompt, max_tokens, temperature, top_p, top_k, stop, model)
|
||||
else:
|
||||
return self._eval(prompt, max_tokens, temperature, top_p, top_k, stop, model)
|
||||
|
||||
def _eval(self, prompt: str, max_tokens: int, temperature: float, top_p: float, top_k: int,
|
||||
stop: Optional[List[str]] = [], model: Optional[str] = None):
|
||||
|
||||
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
||||
created: int = int(time.time())
|
||||
if model is None:
|
||||
model_name = self.model_path
|
||||
else:
|
||||
model_name = model
|
||||
|
||||
input_tokens = self._tokenize(prompt)
|
||||
prompt_len = len(input_tokens)
|
||||
if max_tokens < 1:
|
||||
return {
|
||||
"id": completion_id,
|
||||
"object": "text_completion",
|
||||
"created": created,
|
||||
"model": model_name,
|
||||
"choices": [
|
||||
{
|
||||
"text": prompt,
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "length",
|
||||
}
|
||||
],
|
||||
"usage":
|
||||
{
|
||||
"prompt_tokens": prompt_len,
|
||||
"completion_tokens": 0,
|
||||
"total_tokens": prompt_len,
|
||||
}
|
||||
}
|
||||
|
||||
n_past = 0
|
||||
output_tokens = []
|
||||
for i in range(max_tokens):
|
||||
token = self.forward(input_ids=input_tokens,
|
||||
n_past=n_past,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature)
|
||||
output_tokens.append(token)
|
||||
n_past += len(input_tokens)
|
||||
input_tokens = [token]
|
||||
if token == self.eos_token():
|
||||
break
|
||||
|
||||
text = self.detokenize(output_tokens)
|
||||
split_text = text
|
||||
if stop != []:
|
||||
for stop_word in stop:
|
||||
split_text = split_text.split(stop_word)[0]
|
||||
if split_text != text:
|
||||
finish_reason = "stop"
|
||||
else:
|
||||
finish_reason = None
|
||||
completion_len = n_past - prompt_len
|
||||
return {
|
||||
"id": completion_id,
|
||||
"object": "text_completion",
|
||||
"created": created,
|
||||
"model": model_name,
|
||||
"choices": [
|
||||
{
|
||||
"text": prompt + split_text,
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": finish_reason,
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_len,
|
||||
"completion_tokens": completion_len,
|
||||
"total_tokens": prompt_len + completion_len,
|
||||
}
|
||||
}
|
||||
|
||||
def stream(self, prompt: str, max_tokens: int, temperature: float, top_p: float, top_k: int,
|
||||
stop: Optional[List[str]] = [], model: Optional[str] = None):
|
||||
completion_id: str = f"cmpl-{str(uuid.uuid4())}"
|
||||
created: int = int(time.time())
|
||||
if model is None:
|
||||
model_name = self.model_path
|
||||
else:
|
||||
model_name = model
|
||||
input_tokens = self._tokenize(prompt)
|
||||
prompt_len = len(input_tokens)
|
||||
if max_tokens < 1:
|
||||
yield {
|
||||
"id": completion_id,
|
||||
"object": "text_completion",
|
||||
"created": created,
|
||||
"model": model_name,
|
||||
"choices": [
|
||||
{
|
||||
"text": prompt,
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "length",
|
||||
}
|
||||
],
|
||||
"usage":
|
||||
{
|
||||
"prompt_tokens": prompt_len
|
||||
}
|
||||
}
|
||||
else:
|
||||
n_past = 0
|
||||
output_tokens = []
|
||||
for i in range(max_tokens):
|
||||
token = self.forward(input_ids=input_tokens,
|
||||
n_past=n_past,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature)
|
||||
output_tokens.append(token)
|
||||
n_past += len(input_tokens)
|
||||
input_tokens = [token]
|
||||
if token == self.eos_token():
|
||||
print('\n')
|
||||
break
|
||||
text = self.detokenize(token)
|
||||
yield {
|
||||
"id": completion_id,
|
||||
"object": "text_completion",
|
||||
"created": created,
|
||||
"model": model_name,
|
||||
"choices": [
|
||||
{
|
||||
"text": text,
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": None,
|
||||
}
|
||||
],
|
||||
"usage":
|
||||
{
|
||||
"prompt_tokens": prompt_len
|
||||
}
|
||||
}
|
||||
|
||||
def _tokenize(self, text: bytes) -> List[int]:
|
||||
"""Tokenize a string.
|
||||
|
||||
Args:
|
||||
text: The utf-8 encoded string to tokenize.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the tokenization failed.
|
||||
|
||||
Returns:
|
||||
A list of tokens.
|
||||
"""
|
||||
return chatglm_tokenize(self.ctx, text)
|
||||
|
||||
def detokenize(self, tokens: List[int]) -> bytes:
|
||||
"""Detokenize a list of tokens.
|
||||
|
||||
Args:
|
||||
tokens: The list of tokens to detokenize.
|
||||
|
||||
Returns:
|
||||
The detokenized string.
|
||||
"""
|
||||
if isinstance(tokens, int):
|
||||
tokens = [tokens]
|
||||
return chatglm_detokenize(self.ctx, tokens)
|
||||
|
||||
def forward(self,
|
||||
input_ids: List[int],
|
||||
n_past: int,
|
||||
do_sample: bool = True,
|
||||
top_k: int = 0,
|
||||
top_p: float = 0.7,
|
||||
temperature: float = 0.95,) -> int:
|
||||
return chatglm_eval(ctx=self.ctx,
|
||||
input_ids=input_ids,
|
||||
n_past=n_past,
|
||||
do_sample=do_sample,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature)
|
||||
|
||||
def eos_token(self) -> int:
|
||||
return chatglm_eos_token(self.ctx)
|
||||
74
python/llm/src/bigdl/llm/ggml/model/chatglm/chatglm_cpp.py
Normal file
74
python/llm/src/bigdl/llm/ggml/model/chatglm/chatglm_cpp.py
Normal file
|
|
@ -0,0 +1,74 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
|
||||
from typing import List
|
||||
from pathlib import Path
|
||||
|
||||
from bigdl.llm.libs.chatglm_C import Pipeline, GenerationConfig
|
||||
|
||||
|
||||
class ChatGLMContext:
|
||||
def __init__(self, pipeline: Pipeline, config: GenerationConfig):
|
||||
self.pipeline = pipeline
|
||||
self.config = config
|
||||
|
||||
|
||||
def chatglm_load(path: str,
|
||||
n_ctx: int,
|
||||
n_threads: int,
|
||||
use_mmap: bool = False,
|
||||
) -> ChatGLMContext:
|
||||
path = str(Path(path))
|
||||
pipeline = Pipeline(path, use_mmap)
|
||||
config = GenerationConfig(
|
||||
max_context_length=n_ctx,
|
||||
num_threads=n_threads,
|
||||
)
|
||||
return ChatGLMContext(pipeline, config)
|
||||
|
||||
|
||||
def chatglm_tokenize(ctx: ChatGLMContext, prompt: str) -> List[int]:
|
||||
return ctx.pipeline.tokenizer.encode(prompt)
|
||||
|
||||
|
||||
def chatglm_detokenize(ctx: ChatGLMContext, input_ids: List[int]) -> str:
|
||||
return ctx.pipeline.tokenizer.decode(input_ids)
|
||||
|
||||
|
||||
def chatglm_eval(ctx: ChatGLMContext,
|
||||
input_ids: List[int],
|
||||
n_past: int,
|
||||
do_sample: bool = True,
|
||||
top_k: int = 0,
|
||||
top_p: float = 0.7,
|
||||
temperature: float = 0.95,
|
||||
) -> int:
|
||||
ctx.config.do_sample = do_sample
|
||||
ctx.config.top_k = top_k
|
||||
ctx.config.top_p = top_p
|
||||
ctx.temperature = temperature
|
||||
return ctx.pipeline.model.generate_next_token(input_ids, ctx.config, n_past,
|
||||
ctx.config.max_context_length)
|
||||
|
||||
|
||||
def chatglm_eos_token(ctx: ChatGLMContext):
|
||||
return ctx.pipeline.model.config.eos_token_id
|
||||
Loading…
Reference in a new issue