add bark (#9016)
This commit is contained in:
		
							parent
							
								
									fa47967583
								
							
						
					
					
						commit
						edb225530b
					
				
					 3 changed files with 116 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -8,6 +8,7 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
 | 
			
		|||
| ChatGLM   | [link](chatglm)   | 
 | 
			
		||||
| Openai Whisper | [link](openai-whisper)   | 
 | 
			
		||||
| BERT | [link](bert)   | 
 | 
			
		||||
| Bark | [link](bark)   |
 | 
			
		||||
 | 
			
		||||
## Recommended Requirements
 | 
			
		||||
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										62
									
								
								python/llm/example/pytorch-models/bark/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								python/llm/example/pytorch-models/bark/README.md
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,62 @@
 | 
			
		|||
# Bark
 | 
			
		||||
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Bark models. For illustration purposes, we utilize the [suno/bark](https://huggingface.co/suno/bark) as reference Bark models.
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Synthesize speech with the given input text
 | 
			
		||||
In the example [synthesize_speech.py](./synthesize_speech.py), we show a basic use case for Bark model to synthesize speech based on the given text, with BigDL-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
pip install TTS scipy
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Download Bark model
 | 
			
		||||
Before running the example, you need to download Bark model to local folder:
 | 
			
		||||
```python
 | 
			
		||||
from huggingface_hub import snapshot_download
 | 
			
		||||
 | 
			
		||||
model_path = snapshot_download(repo_id='suno/bark',
 | 
			
		||||
                               local_dir='bark/') # you can change `local_dir` parameter to specify any local folder
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Please refer to [here](https://huggingface.co/docs/huggingface_hub/guides/download#download-files-to-local-folder) for more information about `snapshot_download`.
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
After setting up the Python environment and downloading Bark model, you could run the example by following steps.
 | 
			
		||||
 | 
			
		||||
#### 3.1 Client
 | 
			
		||||
On client Windows machines, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```powershell
 | 
			
		||||
# make sure `--model-path` corresponds to the local folder of downloaded model
 | 
			
		||||
python ./synthesize_speech.py --model-path 'bark/' --text "This is an example text for synthesize speech."
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#33-arguments-info) section.
 | 
			
		||||
 | 
			
		||||
#### 3.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set BigDL-Nano env variables
 | 
			
		||||
source bigdl-nano-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
# make sure `--model-path` corresponds to the local folder of downloaded model
 | 
			
		||||
numactl -C 0-47 -m 0 python ./synthesize_speech.py --model-path 'bark/' --text "This is an example text for synthesize speech."
 | 
			
		||||
```
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#33-arguments-info) section.
 | 
			
		||||
 | 
			
		||||
#### 3.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--model-path MODEL_PATH`: **required**, argument defining the local path to the Bark model checkpoint folder.
 | 
			
		||||
- `--text TEXT`: argument defining the text to synthesize speech. It is default to be `"This is an example text for synthesize speech."`.
 | 
			
		||||
							
								
								
									
										53
									
								
								python/llm/example/pytorch-models/bark/synthesize_speech.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										53
									
								
								python/llm/example/pytorch-models/bark/synthesize_speech.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,53 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import scipy
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from TTS.tts.configs.bark_config import BarkConfig
 | 
			
		||||
from TTS.tts.models.bark import Bark
 | 
			
		||||
from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Synthesize speech with the given input text using Bark model')
 | 
			
		||||
    parser.add_argument('--model-path', type=str, required=True,
 | 
			
		||||
                        help='The local path to the Bark model checkpoint folder')
 | 
			
		||||
    parser.add_argument('--text', type=str, default="This is an example text for synthesize speech.",
 | 
			
		||||
                        help='Text to synthesize speech')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.model_path
 | 
			
		||||
    
 | 
			
		||||
    # Load model
 | 
			
		||||
    config = BarkConfig()
 | 
			
		||||
    model = Bark.init_from_config(config)
 | 
			
		||||
    model.load_checkpoint(config, checkpoint_dir=model_path, eval=True)
 | 
			
		||||
    
 | 
			
		||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
			
		||||
    model = optimize_model(model)
 | 
			
		||||
 | 
			
		||||
    # Synthesize speech with the given input
 | 
			
		||||
    text = args.text
 | 
			
		||||
    st = time.time()
 | 
			
		||||
    output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None) # with random speaker
 | 
			
		||||
    end = time.time()
 | 
			
		||||
    print(f'Time cost: {end-st} s')
 | 
			
		||||
 | 
			
		||||
    # Save the speech as a .wav file using scipy
 | 
			
		||||
    sampling_rate = model.config.sample_rate
 | 
			
		||||
    scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=output_dict["wav"].squeeze())
 | 
			
		||||
		Loading…
	
		Reference in a new issue