This commit is contained in:
binbin Deng 2023-09-21 12:24:58 +08:00 committed by GitHub
parent fa47967583
commit edb225530b
3 changed files with 116 additions and 0 deletions

View file

@ -8,6 +8,7 @@ You can use `optimize_model` API to accelerate general PyTorch models on Intel s
| ChatGLM | [link](chatglm) | | ChatGLM | [link](chatglm) |
| Openai Whisper | [link](openai-whisper) | | Openai Whisper | [link](openai-whisper) |
| BERT | [link](bert) | | BERT | [link](bert) |
| Bark | [link](bark) |
## Recommended Requirements ## Recommended Requirements
To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client). To run the examples, we recommend using Intel® Xeon® processors (server), or >= 12th Gen Intel® Core™ processor (client).

View file

@ -0,0 +1,62 @@
# Bark
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Bark models. For illustration purposes, we utilize the [suno/bark](https://huggingface.co/suno/bark) as reference Bark models.
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Synthesize speech with the given input text
In the example [synthesize_speech.py](./synthesize_speech.py), we show a basic use case for Bark model to synthesize speech based on the given text, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install TTS scipy
```
### 2. Download Bark model
Before running the example, you need to download Bark model to local folder:
```python
from huggingface_hub import snapshot_download
model_path = snapshot_download(repo_id='suno/bark',
local_dir='bark/') # you can change `local_dir` parameter to specify any local folder
```
Please refer to [here](https://huggingface.co/docs/huggingface_hub/guides/download#download-files-to-local-folder) for more information about `snapshot_download`.
### 3. Run
After setting up the Python environment and downloading Bark model, you could run the example by following steps.
#### 3.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```powershell
# make sure `--model-path` corresponds to the local folder of downloaded model
python ./synthesize_speech.py --model-path 'bark/' --text "This is an example text for synthesize speech."
```
More information about arguments can be found in [Arguments Info](#33-arguments-info) section.
#### 3.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
```bash
# set BigDL-Nano env variables
source bigdl-nano-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
# make sure `--model-path` corresponds to the local folder of downloaded model
numactl -C 0-47 -m 0 python ./synthesize_speech.py --model-path 'bark/' --text "This is an example text for synthesize speech."
```
More information about arguments can be found in [Arguments Info](#33-arguments-info) section.
#### 3.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--model-path MODEL_PATH`: **required**, argument defining the local path to the Bark model checkpoint folder.
- `--text TEXT`: argument defining the text to synthesize speech. It is default to be `"This is an example text for synthesize speech."`.

View file

@ -0,0 +1,53 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import scipy
import time
import argparse
from TTS.tts.configs.bark_config import BarkConfig
from TTS.tts.models.bark import Bark
from bigdl.llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Synthesize speech with the given input text using Bark model')
parser.add_argument('--model-path', type=str, required=True,
help='The local path to the Bark model checkpoint folder')
parser.add_argument('--text', type=str, default="This is an example text for synthesize speech.",
help='Text to synthesize speech')
args = parser.parse_args()
model_path = args.model_path
# Load model
config = BarkConfig()
model = Bark.init_from_config(config)
model.load_checkpoint(config, checkpoint_dir=model_path, eval=True)
# With only one line to enable BigDL-LLM optimization on model
model = optimize_model(model)
# Synthesize speech with the given input
text = args.text
st = time.time()
output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None) # with random speaker
end = time.time()
print(f'Time cost: {end-st} s')
# Save the speech as a .wav file using scipy
sampling_rate = model.config.sample_rate
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=output_dict["wav"].squeeze())