diff --git a/python/llm/dev/benchmark/all-in-one/run.py b/python/llm/dev/benchmark/all-in-one/run.py index 09954e76..86d48572 100644 --- a/python/llm/dev/benchmark/all-in-one/run.py +++ b/python/llm/dev/benchmark/all-in-one/run.py @@ -35,6 +35,8 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf', 'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5', 'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b'] +CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b'] + results = [] @@ -135,7 +137,7 @@ def run_transformer_int4(repo_id, # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) elif repo_id in LLAMA_IDS: @@ -196,7 +198,7 @@ def run_pytorch_autocast_bf16(repo_id, model_path = get_model_path(repo_id, local_model_hub) st = time.perf_counter() - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: # TODO: need verify chatglm family run bf16. print("Currently pytorch do not support bfloat16 on cpu for chatglm models. Will skip it") return @@ -263,7 +265,7 @@ def run_optimize_model(repo_id, # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True) model = optimize_model(model, low_bit=low_bit) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) @@ -331,7 +333,7 @@ def run_transformer_int4_gpu(repo_id, # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, trust_remote_code=True, use_cache=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) @@ -410,7 +412,7 @@ def run_optimize_model_gpu(repo_id, # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True, use_cache=True) model = optimize_model(model, low_bit=low_bit) @@ -486,7 +488,7 @@ def run_ipex_fp16_gpu(repo_id, import intel_extension_for_pytorch as ipex model_path = get_model_path(repo_id, local_model_hub) st = time.perf_counter() - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.half().to('xpu') @@ -569,7 +571,7 @@ def run_deepspeed_transformer_int4_cpu(repo_id, st = time.perf_counter() # Note: only tested cpu Llama2-7b # Native Huggingface transformers loading to enable deepspeed init - if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: + if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, trust_remote_code=True, use_cache=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) elif repo_id in LLAMA_IDS: