Add llamacpp_portable_zip_gpu_quickstart.zh-CN.md (#12930)
* Add llamacpp_portable_zip_gpu_quickstart.zh-CN.md Add llamacpp_portable_zip_gpu_quickstart.zh-CN.md * Update README.zh-CN.md Changed and Linked to llamacpp portable zip.zh-CN.md. * Update llamacpp_portable_zip_gpu_quickstart.md Added CN version link * Update README.zh-CN.md Update all links to "llamacpp_portable_zip_gpu_quickstart.zh-CN.md * Update llama_cpp_quickstart.zh-CN.md * Update llamacpp_portable_zip_gpu_quickstart.zh-CN.md Modify based on comments. * Update llamacpp_portable_zip_gpu_quickstart.zh-CN.md Modify based on comments. * Update llamacpp_portable_zip_gpu_quickstart.zh-CN.md Update the doc based on #12928 * Update llamacpp_portable_zip_gpu_quickstart.zh-CN.md Add “More Details” on Table of Contents * Update README.zh-CN.md Update llamacpp_portable_zip_gpu_quickstart CN link * Update README.zh-CN.md Change llama.cpp link * Update README.zh-CN.md * Update README.md
This commit is contained in:
		
							parent
							
								
									7c0c77cce3
								
							
						
					
					
						commit
						eccb5b817e
					
				
					 6 changed files with 343 additions and 9 deletions
				
			
		| 
						 | 
				
			
			@ -5,11 +5,11 @@
 | 
			
		|||
 | 
			
		||||
**`ipex-llm`** 是一个将大语言模型高效地运行于 Intel [GPU](docs/mddocs/Quickstart/install_windows_gpu.md) *(如搭载集成显卡的个人电脑,Arc 独立显卡、Flex 及 Max 数据中心 GPU 等)*、[NPU](docs/mddocs/Quickstart/npu_quickstart.md) 和 CPU 上的大模型 XPU 加速库[^1]。 
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> - *`ipex-llm`可以与  [llama.cpp](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md), [Ollama](docs/mddocs/Quickstart/ollama_portable_zip_quickstart.zh-CN.md), [HuggingFace transformers](python/llm/example/GPU/HuggingFace), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md), [Text-Generation-WebUI](docs/mddocs/Quickstart/webui_quickstart.md), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [FastChat](docs/mddocs/Quickstart/fastchat_quickstart.md), [Axolotl](docs/mddocs/Quickstart/axolotl_quickstart.md), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models) 等无缝衔接。* 
 | 
			
		||||
> - *`ipex-llm`可以与  [llama.cpp](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md), [Ollama](docs/mddocs/Quickstart/ollama_portable_zip_quickstart.zh-CN.md), [HuggingFace transformers](python/llm/example/GPU/HuggingFace), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md), [Text-Generation-WebUI](docs/mddocs/Quickstart/webui_quickstart.md), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [FastChat](docs/mddocs/Quickstart/fastchat_quickstart.md), [Axolotl](docs/mddocs/Quickstart/axolotl_quickstart.md), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models) 等无缝衔接。* 
 | 
			
		||||
> - ***70+** 模型已经在 `ipex-llm` 上得到优化和验证(如 Llama, Phi, Mistral, Mixtral, Whisper, DeepSeek, Qwen, ChatGLM, MiniCPM, Qwen-VL, MiniCPM-V 等), 以获得先进的 **大模型算法优化**, **XPU 加速** 以及 **低比特(FP8FP8/FP6/FP4/INT4)支持**;更多模型信息请参阅[这里](#模型验证)。*
 | 
			
		||||
 | 
			
		||||
## 最新更新 🔥 
 | 
			
		||||
- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#windows-quickstart) 和 [Linux](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md#linux-quickstart)) 和 **NPU** (仅 [Windows](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
			
		||||
- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#windows-用户指南) 和 [Linux](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#linux-用户指南)) 和 **NPU** (仅 [Windows](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
			
		||||
- [2025/02] 新增 [Ollama Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** 上直接**免安装运行 Ollama** (包括 [Windows](docs/mddocs/Quickstart/ollama_portable_zip_quickstart.zh-CN.md#windows用户指南) 和 [Linux](docs/mddocs/Quickstart/ollama_portable_zip_quickstart.zh-CN.md#linux用户指南))。
 | 
			
		||||
- [2025/02] 新增在 Intel Arc GPUs 上运行 [vLLM 0.6.6](docs/mddocs/DockerGuides/vllm_docker_quickstart.md) 的支持。
 | 
			
		||||
- [2025/01] 新增在 Intel Arc [B580](docs/mddocs/Quickstart/bmg_quickstart.md) GPU 上运行 `ipex-llm` 的指南。
 | 
			
		||||
| 
						 | 
				
			
			@ -97,7 +97,7 @@
 | 
			
		|||
      <a href="docs/mddocs/Quickstart/webui_quickstart.md">TextGeneration-WebUI <br> (Llama3-8B, FP8) </a>
 | 
			
		||||
    </td>
 | 
			
		||||
    <td align="center" width="25%">
 | 
			
		||||
      <a href="docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md">llama.cpp <br> (DeepSeek-R1-Distill-Qwen-32B, Q4_K)</a>
 | 
			
		||||
      <a href="docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md">llama.cpp <br> (DeepSeek-R1-Distill-Qwen-32B, Q4_K)</a>
 | 
			
		||||
    </td>  </tr>
 | 
			
		||||
</table>
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -179,7 +179,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
 | 
			
		|||
 | 
			
		||||
### 使用
 | 
			
		||||
- [Ollama](docs/mddocs/Quickstart/ollama_portable_zip_quickstart.zh-CN.md): 在 Intel GPU 上直接**免安装运行 Ollama**
 | 
			
		||||
- [llama.cpp](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.md): 在 Intel GPU 上直接**免安装运行llama.cpp**
 | 
			
		||||
- [llama.cpp](docs/mddocs/Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md): 在 Intel GPU 上直接**免安装运行llama.cpp**
 | 
			
		||||
- [Arc B580](docs/mddocs/Quickstart/bmg_quickstart.md): 在 Intel Arc **B580** GPU 上运行 `ipex-llm`(包括 Ollama, llama.cpp, PyTorch, HuggingFace 等)
 | 
			
		||||
- [NPU](docs/mddocs/Quickstart/npu_quickstart.md): 在 Intel **NPU** 上运行 `ipex-llm`(支持 Python/C++ 及 [llama.cpp](docs/mddocs/Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md) API)
 | 
			
		||||
- [PyTorch/HuggingFace](docs/mddocs/Quickstart/install_windows_gpu.zh-CN.md): 使用 [Windows](docs/mddocs/Quickstart/install_windows_gpu.zh-CN.md) 和 [Linux](docs/mddocs/Quickstart/install_linux_gpu.zh-CN.md) 在 Intel GPU 上运行 **PyTorch**、**HuggingFace**、**LangChain**、**LlamaIndex** 等 (*使用 `ipex-llm` 的 Python 接口*) 
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,7 +6,7 @@
 | 
			
		|||
[ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) 是一个使用纯C++实现的、支持多种硬件平台的高效大语言模型推理库。现在,借助 [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) 的 C++ 接口作为其加速后端,你可以在 Intel **GPU**  *(如配有集成显卡,以及 Arc,Flex 和 Max 等独立显卡的本地 PC)* 上,轻松部署并运行 `llama.cpp` 。
 | 
			
		||||
 | 
			
		||||
> [!Important]
 | 
			
		||||
> 现在可使用 [llama.cpp Portable Zip](./llamacpp_portable_zip_gpu_quickstart.md) 在 Intel GPU 上直接***免安装运行 llama.cpp***.
 | 
			
		||||
> 现在可使用 [llama.cpp Portable Zip](./llamacpp_portable_zip_gpu_quickstart.zh-CN.md) 在 Intel GPU 上直接***免安装运行 llama.cpp***.
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> 如果是在 Intel Arc B 系列 GPU 上安装(例,**B580**),请参阅本[指南](./bmg_quickstart.md)。
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,4 +1,7 @@
 | 
			
		|||
# Run llama.cpp Portable Zip on Intel GPU with IPEX-LLM
 | 
			
		||||
<p>
 | 
			
		||||
   < <b>English</b> | <a href='./llamacpp_portable_zip_gpu_quickstart.zh-CN.md'>中文</a> >
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
This guide demonstrates how to use [llama.cpp portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) to directly run llama.cpp on Intel GPU with `ipex-llm` (without the need of manual installations).
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,331 @@
 | 
			
		|||
#  使用 IPEX-LLM 在 Intel GPU 运行 llama.cpp Portable Zip 
 | 
			
		||||
<p>
 | 
			
		||||
   < <a href='./llamacpp_portable_zip_gpu_quickstart.md'>English</a> | <b>中文</b> >
 | 
			
		||||
</p>
 | 
			
		||||
     
 | 
			
		||||
本指南演示如何使用 [llama.cpp portable zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 通过 `ipex-llm` 在 Intel GPU 上直接免安装运行。
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> llama.cpp portable zip 在如下设备上进行了验证:
 | 
			
		||||
> - Intel Core Ultra processors
 | 
			
		||||
> - Intel Core 11th - 14th gen processors
 | 
			
		||||
> - Intel Arc A-Series GPU
 | 
			
		||||
> - Intel Arc B-Series GPU
 | 
			
		||||
 | 
			
		||||
## 目录
 | 
			
		||||
- [Windows 用户指南](#windows-用户指南)
 | 
			
		||||
  - [系统环境安装](#系统环境安装)
 | 
			
		||||
  - [步骤 1:下载与解压](#步骤-1下载与解压)
 | 
			
		||||
  - [步骤 2:运行时配置](#步骤-2运行时配置)
 | 
			
		||||
  - [步骤 3:运行 GGUF 模型](#步骤-3运行-gguf-模型)
 | 
			
		||||
- [Linux 用户指南](#linux-用户指南)
 | 
			
		||||
  - [系统环境安装](#系统环境安装-1)
 | 
			
		||||
  - [步骤 1:下载与解压](#步骤-1下载与解压-1)
 | 
			
		||||
  - [步骤 2:运行时配置](#步骤-2运行时配置-1)
 | 
			
		||||
  - [步骤 3:运行 GGUF 模型](#步骤-3运行-gguf-模型-1)
 | 
			
		||||
  - [(新功能) FlashMoE 运行 DeepSeek V3/R1](#flashmoe-运行-deepseek-v3r1)
 | 
			
		||||
- [提示与故障排除](#提示与故障排除)
 | 
			
		||||
  - [错误:检测到不同的 sycl 设备](#错误检测到不同的-sycl-设备)
 | 
			
		||||
  - [多 GPU 配置](#多-gpu-配置)
 | 
			
		||||
  - [性能环境](#性能环境)
 | 
			
		||||
- [更多详情](llama_cpp_quickstart.md)
 | 
			
		||||
 | 
			
		||||
## Windows 用户指南
 | 
			
		||||
 | 
			
		||||
### 系统环境安装
 | 
			
		||||
 | 
			
		||||
检查你的 GPU 驱动程序版本,并根据需要进行更新:
 | 
			
		||||
 | 
			
		||||
- 对于 Intel Core Ultra processors (Series 2) 或 Intel Arc B-Series GPU,我们推荐将你的 GPU 驱动版本升级到[最新版本](https://www.intel.com/content/www/us/en/download/785597/intel-arc-iris-xe-graphics-windows.html)
 | 
			
		||||
 | 
			
		||||
- 对于其他 Intel 核显和独显,我们推荐使用 GPU 驱动版本[32.0.101.6078](https://www.intel.com/content/www/us/en/download/785597/834050/intel-arc-iris-xe-graphics-windows.html)
 | 
			
		||||
 | 
			
		||||
### 步骤 1:下载与解压
 | 
			
		||||
 | 
			
		||||
对于 Windows 用户,请从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM llama.cpp portable zip。
 | 
			
		||||
 | 
			
		||||
然后,将 zip 文件解压到一个文件夹中。
 | 
			
		||||
 | 
			
		||||
### 步骤 2:运行时配置
 | 
			
		||||
 | 
			
		||||
- 打开命令提示符(cmd),并通过在命令行输入指令 `cd /d PATH\TO\EXTRACTED\FOLDER` 进入解压缩后的文件夹。
 | 
			
		||||
- 要使用 GPU 加速,在运行 `llama.cpp` 之前,建议设置如下环境变量。
 | 
			
		||||
  ```cmd
 | 
			
		||||
  set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
  ```
 | 
			
		||||
- 对于多 GPU 用户,请转至[提示](#多-gpu-配置)了解如何选择特定的 GPU。
 | 
			
		||||
 | 
			
		||||
### 步骤 3:运行 GGUF 模型
 | 
			
		||||
 | 
			
		||||
这里我们提供了一个简单的示例来展示如何使用 IPEX-LLM 运行社区 GGUF 模型。
 | 
			
		||||
 | 
			
		||||
#### 模型下载
 | 
			
		||||
运行之前,你需要下载或复制社区的 GGUF 模型到你的当前目录。例如,[bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF](https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF/blob/main/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf) 的 `DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf`。
 | 
			
		||||
 | 
			
		||||
#### 运行 GGUF 模型
 | 
			
		||||
 | 
			
		||||
在运行以下命令之前,请将 `PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf` 更改为你的模型路径。
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
llama-cli.exe -m PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048  -t 8 -e -ngl 99 --color -c 2500 --temp 0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
部分输出:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
Found 1 SYCL devices:
 | 
			
		||||
|  |                   |                                       |       |Max    |        |Max  |Global |
 | 
			
		||||
    |
 | 
			
		||||
|  |                   |                                       |       |compute|Max work|sub  |mem    |
 | 
			
		||||
    |
 | 
			
		||||
|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|
 | 
			
		||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
 | 
			
		||||
| 0| [level_zero:gpu:0]|                     Intel Arc Graphics|  12.71|    128|    1024|   32| 13578M|            1.3.27504|
 | 
			
		||||
llama_kv_cache_init:      SYCL0 KV buffer size =   138.25 MiB
 | 
			
		||||
llama_new_context_with_model: KV self size  =  138.25 MiB, K (f16):   69.12 MiB, V (f16):   69.12 MiB
 | 
			
		||||
llama_new_context_with_model:  SYCL_Host  output buffer size =     0.58 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL0 compute buffer size =  1501.00 MiB
 | 
			
		||||
llama_new_context_with_model:  SYCL_Host compute buffer size =    58.97 MiB
 | 
			
		||||
llama_new_context_with_model: graph nodes  = 874
 | 
			
		||||
llama_new_context_with_model: graph splits = 2
 | 
			
		||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
 | 
			
		||||
main: llama threadpool init, n_threads = 8
 | 
			
		||||
 | 
			
		||||
system_info: n_threads = 8 (n_threads_batch = 8) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
 | 
			
		||||
 | 
			
		||||
sampler seed: 341519086
 | 
			
		||||
sampler params:
 | 
			
		||||
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
 | 
			
		||||
        dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
 | 
			
		||||
        top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.000
 | 
			
		||||
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
 | 
			
		||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
 | 
			
		||||
 | 
			
		||||
generate: n_ctx = 2528, n_batch = 4096, n_predict = 2048, n_keep = 1
 | 
			
		||||
 | 
			
		||||
<think>
 | 
			
		||||
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 | 
			
		||||
</think>
 | 
			
		||||
 | 
			
		||||
<answer>XXXX</answer> [end of text]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
llama_perf_sampler_print:    sampling time =     xxx.xx ms /  1386 runs   (    x.xx ms per token, xxxxx.xx tokens per second)
 | 
			
		||||
llama_perf_context_print:        load time =   xxxxx.xx ms
 | 
			
		||||
llama_perf_context_print: prompt eval time =     xxx.xx ms /   129 tokens (    x.xx ms per token,   xxx.xx tokens per second)
 | 
			
		||||
llama_perf_context_print:        eval time =   xxxxx.xx ms /  1256 runs   (   xx.xx ms per token,    xx.xx tokens per second)
 | 
			
		||||
llama_perf_context_print:       total time =   xxxxx.xx ms /  1385 tokens
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Linux 用户指南
 | 
			
		||||
 | 
			
		||||
### 系统环境安装
 | 
			
		||||
 | 
			
		||||
检查你的 GPU 驱动程序版本,并根据需要进行更新;我们推荐用户按照 [消费级显卡驱动安装指南](https://dgpu-docs.intel.com/driver/client/overview.html)来安装 GPU 驱动。
 | 
			
		||||
 | 
			
		||||
### 步骤 1:下载与解压
 | 
			
		||||
 | 
			
		||||
对于 Linux 用户,从此[链接](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly)下载 IPEX-LLM llama.cpp portable tgz。
 | 
			
		||||
 | 
			
		||||
然后,将 tgz 文件解压到一个文件夹中。
 | 
			
		||||
 | 
			
		||||
### 步骤 2:运行时配置
 | 
			
		||||
 | 
			
		||||
- 开启一个终端,输入命令 `cd /PATH/TO/EXTRACTED/FOLDER` 进入解压缩后的文件夹。
 | 
			
		||||
- 要使用 GPU 加速,在运行 `llama.cpp` 之前,建议设置如下环境变量。
 | 
			
		||||
  ```bash
 | 
			
		||||
  export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
  ```
 | 
			
		||||
- 对于多 GPU 用户,请转至[提示](#多-gpu-配置)了解如何选择特定的 GPU。
 | 
			
		||||
 | 
			
		||||
### 步骤 3:运行 GGUF 模型
 | 
			
		||||
 | 
			
		||||
这里我们提供了一个简单的示例来展示如何使用 IPEX-LLM 运行社区 GGUF 模型。  
 | 
			
		||||
 | 
			
		||||
#### 模型下载
 | 
			
		||||
运行之前,你需要下载或复制社区的 GGUF 模型到你的当前目录。例如,[bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF](https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF/blob/main/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf) 的 `DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf`。
 | 
			
		||||
 | 
			
		||||
#### 运行 GGUF 模型
 | 
			
		||||
 | 
			
		||||
在运行以下命令之前,请将 `PATH\TO\DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf` 更改为你的模型路径。
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
./llama-cli -m /PATH/TO/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -p "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: Question:The product of the ages of three teenagers is 4590. How old is the oldest? a. 18 b. 19 c. 15 d. 17 Assistant: <think>" -n 2048  -t 8 -e -ngl 99 --color -c 2500 --temp 0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
部分输出:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
Found 1 SYCL devices:
 | 
			
		||||
|  |                   |                                       |       |Max    |        |Max  |Global |
 | 
			
		||||
    |
 | 
			
		||||
|  |                   |                                       |       |compute|Max work|sub  |mem    |
 | 
			
		||||
    |
 | 
			
		||||
|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|
 | 
			
		||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
 | 
			
		||||
| 0| [level_zero:gpu:0]|                     Intel Arc Graphics|  12.71|    128|    1024|   32| 13578M|            1.3.27504|
 | 
			
		||||
llama_kv_cache_init:      SYCL0 KV buffer size =   138.25 MiB
 | 
			
		||||
llama_new_context_with_model: KV self size  =  138.25 MiB, K (f16):   69.12 MiB, V (f16):   69.12 MiB
 | 
			
		||||
llama_new_context_with_model:  SYCL_Host  output buffer size =     0.58 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL0 compute buffer size =  1501.00 MiB
 | 
			
		||||
llama_new_context_with_model:  SYCL_Host compute buffer size =    58.97 MiB
 | 
			
		||||
llama_new_context_with_model: graph nodes  = 874
 | 
			
		||||
llama_new_context_with_model: graph splits = 2
 | 
			
		||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
 | 
			
		||||
main: llama threadpool init, n_threads = 8
 | 
			
		||||
 | 
			
		||||
system_info: n_threads = 8 (n_threads_batch = 8) / 22 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
 | 
			
		||||
 | 
			
		||||
sampler seed: 341519086
 | 
			
		||||
sampler params:
 | 
			
		||||
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
 | 
			
		||||
        dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
 | 
			
		||||
        top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.000
 | 
			
		||||
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
 | 
			
		||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
 | 
			
		||||
 | 
			
		||||
generate: n_ctx = 2528, n_batch = 4096, n_predict = 2048, n_keep = 1
 | 
			
		||||
 | 
			
		||||
<think>
 | 
			
		||||
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 | 
			
		||||
</think>
 | 
			
		||||
 | 
			
		||||
<answer>XXXX</answer> [end of text]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### FlashMoE 运行 DeepSeek V3/R1
 | 
			
		||||
 | 
			
		||||
FlashMoE 是一款基于 llama.cpp 构建的命令行工具,针对 DeepSeek V3/R1 等混合专家模型(MoE)模型进行了优化。现在,它可用于 Linux 平台。
 | 
			
		||||
 | 
			
		||||
经过测试的 MoE GGUF 模型(也支持其他 MoE GGUF 模型):
 | 
			
		||||
- [DeepSeek-V3-Q4_K_M](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M)
 | 
			
		||||
- [DeepSeek-V3-Q6_K](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q6_K)
 | 
			
		||||
- [DeepSeek-R1-Q4_K_M.gguf](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-Q4_K_M)
 | 
			
		||||
- [DeepSeek-R1-Q6_K](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-Q6_K)
 | 
			
		||||
 | 
			
		||||
硬件要求: 
 | 
			
		||||
- 380 GB 内存
 | 
			
		||||
- 1-8块 ARC A770
 | 
			
		||||
- 500GB 硬盘空间
 | 
			
		||||
 | 
			
		||||
提示: 
 | 
			
		||||
- 更大的模型和其他精度可能需要更多的资源。
 | 
			
		||||
- 对于 1 块 ARC A770 的平台,请减少上下文长度(例如 1024),以避免 OOM(内存溢出)。请在以下命令的末尾添加选项 `-c 1024`。
 | 
			
		||||
 | 
			
		||||
运行之前,你需要下载或复制社区的 GGUF 模型到你的当前目录。例如,[DeepSeek-R1-Q4_K_M.gguf](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-Q4_K_M) 的 `DeepSeek-R1-Q4_K_M.gguf`。
 | 
			
		||||
 | 
			
		||||
请将 `/PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf` 更改为您的模型路径,然后运行 `DeepSeek-R1-Q4_K_M.gguf`
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
./flash-moe -m /PATH/TO/DeepSeek-R1-Q4_K_M-00001-of-00009.gguf --prompt "What's AI?"
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
部分输出:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
llama_kv_cache_init:      SYCL0 KV buffer size =  1280.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL1 KV buffer size =  1280.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL2 KV buffer size =  1280.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL3 KV buffer size =  1280.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL4 KV buffer size =  1120.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL5 KV buffer size =  1280.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL6 KV buffer size =  1280.00 MiB
 | 
			
		||||
llama_kv_cache_init:      SYCL7 KV buffer size =   960.00 MiB
 | 
			
		||||
llama_new_context_with_model: KV self size  = 9760.00 MiB, K (i8): 5856.00 MiB, V (i8): 3904.00 MiB
 | 
			
		||||
llama_new_context_with_model:  SYCL_Host  output buffer size =     0.49 MiB
 | 
			
		||||
llama_new_context_with_model: pipeline parallelism enabled (n_copies=1)
 | 
			
		||||
llama_new_context_with_model:      SYCL0 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL1 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL2 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL3 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL4 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL5 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL6 compute buffer size =  2076.02 MiB
 | 
			
		||||
llama_new_context_with_model:      SYCL7 compute buffer size =  3264.00 MiB
 | 
			
		||||
llama_new_context_with_model:  SYCL_Host compute buffer size =  1332.05 MiB
 | 
			
		||||
llama_new_context_with_model: graph nodes  = 5184 (with bs=4096), 4720 (with bs=1)
 | 
			
		||||
llama_new_context_with_model: graph splits = 125
 | 
			
		||||
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
 | 
			
		||||
main: llama threadpool init, n_threads = 48
 | 
			
		||||
 | 
			
		||||
system_info: n_threads = 48 (n_threads_batch = 48) / 192 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
 | 
			
		||||
 | 
			
		||||
sampler seed: 2052631435
 | 
			
		||||
sampler params:
 | 
			
		||||
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
 | 
			
		||||
        dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
 | 
			
		||||
        top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
 | 
			
		||||
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
 | 
			
		||||
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
 | 
			
		||||
generate: n_ctx = 4096, n_batch = 4096, n_predict = -1, n_keep = 1
 | 
			
		||||
 | 
			
		||||
<think>
 | 
			
		||||
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 | 
			
		||||
</think>
 | 
			
		||||
 | 
			
		||||
<answer>XXXX</answer> [end of text]
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## 提示与故障排除
 | 
			
		||||
 | 
			
		||||
### 错误:检测到不同的 sycl 设备
 | 
			
		||||
 | 
			
		||||
你将会看到如下的错误日志:
 | 
			
		||||
```
 | 
			
		||||
Found 3 SYCL devices:
 | 
			
		||||
|  |                   |                                       |       |Max    |        |Max  |Global |                     |
 | 
			
		||||
|  |                   |                                       |       |compute|Max work|sub  |mem    |                     |
 | 
			
		||||
|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|
 | 
			
		||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
 | 
			
		||||
| 0| [level_zero:gpu:0]|                Intel Arc A770 Graphics|  12.55|    512|    1024|   32| 16225M|     1.6.31907.700000|
 | 
			
		||||
| 1| [level_zero:gpu:1]|                Intel Arc A770 Graphics|  12.55|    512|    1024|   32| 16225M|     1.6.31907.700000|
 | 
			
		||||
| 2| [level_zero:gpu:2]|                 Intel UHD Graphics 770|   12.2|     32|     512|   32| 63218M|     1.6.31907.700000|
 | 
			
		||||
Error: Detected different sycl devices, the performance will limit to the slowest device. 
 | 
			
		||||
If you want to disable this checking and use all of them, please set environment SYCL_DEVICE_CHECK=0, and try again.
 | 
			
		||||
If you just want to use one of the devices, please set environment like ONEAPI_DEVICE_SELECTOR=level_zero:0 or ONEAPI_DEVICE_SELECTOR=level_zero:1 to choose your devices.
 | 
			
		||||
If you want to use two or more deivces, please set environment like ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"
 | 
			
		||||
See https://github.com/intel/ipex-llm/blob/main/docs/mddocs/Overview/KeyFeatures/multi_gpus_selection.md for details. Exiting.
 | 
			
		||||
```
 | 
			
		||||
由于 GPU 规格不同,任务将根据设备的显存进行分配。例如,iGPU(Intel UHD Graphics 770) 将承担 2/3 的计算任务,导致性能表现较差。
 | 
			
		||||
为此,你可以有以下两种选择:
 | 
			
		||||
1. 禁用 iGPU 可以获得最佳性能。 更多详情可以访问 [多 GPU 配置](#多-gpu-配置)。
 | 
			
		||||
2. 禁用此检查并使用所有 GPU,可以运行以下命令:  
 | 
			
		||||
   - `set SYCL_DEVICE_CHECK=0` (Windows 用户)   
 | 
			
		||||
   - `export SYCL_DEVICE_CHECK=0` (Linux 用户)
 | 
			
		||||
 | 
			
		||||
### 多 GPU 配置
 | 
			
		||||
 | 
			
		||||
如果你的机器配有多个 Intel GPU,llama.cpp 默认会在所有 GPU 上运行。如果你不清楚硬件配置,可以在运行 GGUF 模型时获取相关配置信息。例如: 
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
Found 3 SYCL devices:
 | 
			
		||||
|  |                   |                                       |       |Max    |        |Max  |Global |                     |
 | 
			
		||||
|  |                   |                                       |       |compute|Max work|sub  |mem    |                     |
 | 
			
		||||
|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|
 | 
			
		||||
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
 | 
			
		||||
| 0| [level_zero:gpu:0]|                Intel Arc A770 Graphics|  12.55|    512|    1024|   32| 16225M|     1.6.31907.700000|
 | 
			
		||||
| 1| [level_zero:gpu:1]|                Intel Arc A770 Graphics|  12.55|    512|    1024|   32| 16225M|     1.6.31907.700000|
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
要指定 llama.cpp 使用的 Intel GPU,可以**在启动 llama.cpp 命令**之前设置环境变量 `ONEAPI_DEVICE_SELECTOR`,示例如下:  
 | 
			
		||||
 | 
			
		||||
- 对于 **Windows** 用户:
 | 
			
		||||
  ```cmd
 | 
			
		||||
  set ONEAPI_DEVICE_SELECTOR=level_zero:0 (If you want to run on one GPU, llama.cpp will use the first GPU.) 
 | 
			
		||||
  set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1" (If you want to run on two GPUs, llama.cpp will use the first and second GPUs.)
 | 
			
		||||
  ```
 | 
			
		||||
- 对于 **Linux** 用户:
 | 
			
		||||
  ```bash
 | 
			
		||||
  export ONEAPI_DEVICE_SELECTOR=level_zero:0 (If you want to run on one GPU, llama.cpp will use the first GPU.) 
 | 
			
		||||
  export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1" (If you want to run on two GPUs, llama.cpp will use the first and second GPUs.)
 | 
			
		||||
  ```
 | 
			
		||||
 
 | 
			
		||||
### 性能环境
 | 
			
		||||
#### SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS
 | 
			
		||||
要启用 SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS,你可以运行以下命令:
 | 
			
		||||
- `set SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1`(Windows 用户)   
 | 
			
		||||
- `export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1`(Linux 用户)
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> 环境变量 `SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS` 用于控制是否使用即时命令列表将任务提交到 GPU。启动此变量通常可以提高性能,但也有例外情况。因此,建议你在启用和禁用该环境变量的情况下进行测试,以找到最佳的性能设置。更多相关细节请参考[此处文章](https://www.intel.com/content/www/us/en/developer/articles/guide/level-zero-immediate-command-lists.html)。  
 | 
			
		||||
| 
						 | 
				
			
			@ -54,9 +54,9 @@
 | 
			
		|||
 | 
			
		||||
### Use
 | 
			
		||||
- [Ollama Portable Zip](Quickstart/ollama_portable_zip_quickstart.md): running **Ollama** on Intel GPU ***without the need of manual installations***
 | 
			
		||||
- [llama.cpp](Quickstart/llamacpp_portable_zip_gpu_quickstart.md): running **llama.cpp** on Intel GPU ***without the need of manual installations***
 | 
			
		||||
- [Arc B580](Quickstart/bmg_quickstart.md): running `ipex-llm` on Intel Arc **B580** GPU for Ollama, llama.cpp, PyTorch, HuggingFace, etc.
 | 
			
		||||
- [NPU](Quickstart/npu_quickstart.md): running `ipex-llm` on Intel **NPU** in both Python and C++
 | 
			
		||||
- [llama.cpp](Quickstart/llama_cpp_quickstart.md): running **llama.cpp** (*using C++ interface of `ipex-llm`*) on Intel GPU
 | 
			
		||||
- [Ollama](Quickstart/ollama_quickstart.md): running **ollama** (*using C++ interface of `ipex-llm`*) on Intel GPU
 | 
			
		||||
- [PyTorch/HuggingFace](Quickstart/install_windows_gpu.md): running **PyTorch**, **HuggingFace**, **LangChain**, **LlamaIndex**, etc. (*using Python interface of `ipex-llm`*) on Intel GPU for [Windows](Quickstart/install_windows_gpu.md) and [Linux](Quickstart/install_linux_gpu.md)
 | 
			
		||||
- [vLLM](Quickstart/vLLM_quickstart.md): running `ipex-llm` in **vLLM** on both Intel [GPU](DockerGuides/vllm_docker_quickstart.md) and [CPU](DockerGuides/vllm_cpu_docker_quickstart.md)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -4,7 +4,7 @@
 | 
			
		|||
</p>
 | 
			
		||||
 | 
			
		||||
## 最新更新 🔥 
 | 
			
		||||
- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#windows-quickstart) 和 [Linux](Quickstart/llamacpp_portable_zip_gpu_quickstart.md#linux-quickstart)) 和 **NPU** (仅 [Windows](Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
			
		||||
- [2025/02] 新增 [llama.cpp Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** (包括 [Windows](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#windows-用户指南) 和 [Linux](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md#linux-用户指南)) 和 **NPU** (仅 [Windows](Quickstart/llama_cpp_npu_portable_zip_quickstart.zh-CN.md)) 上直接**免安装运行 llama.cpp**。
 | 
			
		||||
- [2025/02] 新增 [Ollama Portable Zip](https://github.com/intel/ipex-llm/releases/tag/v2.2.0-nightly) 在 Intel **GPU** 上直接**免安装运行 Ollama** (包括 [Windows](Quickstart/ollama_portable_zip_quickstart.zh-CN.md#windows用户指南) 和 [Linux](Quickstart/ollama_portable_zip_quickstart.zh-CN.md#linux用户指南))。
 | 
			
		||||
- [2025/02] 新增在 Intel Arc GPUs 上运行 [vLLM 0.6.6](DockerGuides/vllm_docker_quickstart.md) 的支持。
 | 
			
		||||
- [2025/01] 新增在 Intel Arc [B580](Quickstart/bmg_quickstart.md) GPU 上运行 `ipex-llm` 的指南。
 | 
			
		||||
| 
						 | 
				
			
			@ -51,10 +51,10 @@
 | 
			
		|||
## `ipex-llm` 快速入门
 | 
			
		||||
 | 
			
		||||
### 使用
 | 
			
		||||
- [Ollama Portable Zip](Quickstart/ollama_portable_zip_quickstart.zh-CN.md): 在 Intel GPU 上直接**免安装运行 Ollama**。
 | 
			
		||||
- [Ollama Portable Zip](Quickstart/ollama_portable_zip_quickstart.zh-CN.md): 在 Intel GPU 上直接**免安装运行 Ollama**
 | 
			
		||||
- [llama.cpp](Quickstart/llamacpp_portable_zip_gpu_quickstart.zh-CN.md): 在 Intel GPU 上直接**免安装运行 llama.cpp** 
 | 
			
		||||
- [Arc B580](Quickstart/bmg_quickstart.md): 在 Intel Arc **B580** GPU 上运行 `ipex-llm`(包括 Ollama, llama.cpp, PyTorch, HuggingFace 等)
 | 
			
		||||
- [NPU](Quickstart/npu_quickstart.md): 在 Intel **NPU** 上运行 `ipex-llm`(支持 Python 和 C++)
 | 
			
		||||
- [llama.cpp](Quickstart/llama_cpp_quickstart.zh-CN.md): 在 Intel GPU 上运行 **llama.cpp** (*使用 `ipex-llm` 的 C++ 接口*) 
 | 
			
		||||
- [Ollama](Quickstart/ollama_quickstart.zh-CN.md): 在 Intel GPU 上运行 **ollama** (*使用 `ipex-llm` 的 C++ 接口*) 
 | 
			
		||||
- [PyTorch/HuggingFace](Quickstart/install_windows_gpu.zh-CN.md): 使用 [Windows](Quickstart/install_windows_gpu.zh-CN.md) 和 [Linux](Quickstart/install_linux_gpu.zh-CN.md) 在 Intel GPU 上运行 **PyTorch**、**HuggingFace**、**LangChain**、**LlamaIndex** 等 (*使用 `ipex-llm` 的 Python 接口*) 
 | 
			
		||||
- [vLLM](Quickstart/vLLM_quickstart.md): 在 Intel [GPU](DockerGuides/vllm_docker_quickstart.md) 和 [CPU](DockerGuides/vllm_cpu_docker_quickstart.md) 上使用 `ipex-llm` 运行 **vLLM** 
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue