LLM: using html to visualize the perf result for Arc (#9228)
* LLM: using html to visualize the perf result for Arc * deploy the html file * add python license * reslove some comments
This commit is contained in:
		
							parent
							
								
									90162264a3
								
							
						
					
					
						commit
						ec9195da42
					
				
					 3 changed files with 47 additions and 5 deletions
				
			
		
							
								
								
									
										5
									
								
								.github/workflows/llm_performance_tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.github/workflows/llm_performance_tests.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
					@ -127,5 +127,8 @@ jobs:
 | 
				
			||||||
          cd python/llm/dev/benchmark/all-in-one
 | 
					          cd python/llm/dev/benchmark/all-in-one
 | 
				
			||||||
          export http_proxy=${HTTP_PROXY}
 | 
					          export http_proxy=${HTTP_PROXY}
 | 
				
			||||||
          export https_proxy=${HTTPS_PROXY}
 | 
					          export https_proxy=${HTTPS_PROXY}
 | 
				
			||||||
          taskset -c 0-$((THREAD_NUM - 1)) python run.py
 | 
					          python run.py
 | 
				
			||||||
          curl -T ./*.csv ${LLM_FTP_URL}/llm/ggml-actions/perf/
 | 
					          curl -T ./*.csv ${LLM_FTP_URL}/llm/ggml-actions/perf/
 | 
				
			||||||
 | 
					          cd ../../../test/benchmark
 | 
				
			||||||
 | 
					          python csv_to_html.py -f ../../dev/benchmark/all-in-one
 | 
				
			||||||
 | 
					          cp ./*.html /mnt/disk1/nightly_perf/
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -59,9 +59,9 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
				
			||||||
    for in_out_pair in in_out_pairs:
 | 
					    for in_out_pair in in_out_pairs:
 | 
				
			||||||
        if result:
 | 
					        if result:
 | 
				
			||||||
            results.append([repo_id,
 | 
					            results.append([repo_id,
 | 
				
			||||||
                            np.mean(result[in_out_pair], axis=0)[0],
 | 
					                            round(np.mean(result[in_out_pair], axis=0)[0]*1000.0, 2),
 | 
				
			||||||
                            np.mean(result[in_out_pair], axis=0)[1],
 | 
					                            round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
 | 
				
			||||||
                            np.mean(result[in_out_pair], axis=0)[2],
 | 
					                            round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2),
 | 
				
			||||||
                            in_out_pair,
 | 
					                            in_out_pair,
 | 
				
			||||||
                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
					                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
				
			||||||
                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
					                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
				
			||||||
| 
						 | 
					@ -545,7 +545,7 @@ if __name__ == '__main__':
 | 
				
			||||||
    for api in conf.test_api:
 | 
					    for api in conf.test_api:
 | 
				
			||||||
        for model in conf.repo_id:
 | 
					        for model in conf.repo_id:
 | 
				
			||||||
            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'])
 | 
					            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'])
 | 
				
			||||||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)',
 | 
					        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
				
			||||||
                                            'input/output tokens', 'actual input/output tokens', 'num_beams'])
 | 
					                                            'input/output tokens', 'actual input/output tokens', 'num_beams'])
 | 
				
			||||||
        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
					        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
				
			||||||
        results = []
 | 
					        results = []
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										39
									
								
								python/llm/test/benchmark/csv_to_html.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										39
									
								
								python/llm/test/benchmark/csv_to_html.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,39 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Python program to convert CSV to HTML Table
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import pandas as pd
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main():
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
				
			||||||
 | 
					    parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
 | 
				
			||||||
 | 
					                        help="The directory which stores the .csv file", default="../../dev/benchmark/all-in-one")
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    csv_files = []
 | 
				
			||||||
 | 
					    for file_name in os.listdir(args.folder_path):
 | 
				
			||||||
 | 
					        file_path = os.path.join(args.folder_path, file_name)
 | 
				
			||||||
 | 
					        if os.path.isfile(file_path) and file_name.endswith(".csv"):
 | 
				
			||||||
 | 
					            csv_files.append(file_path)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    a = pd.read_csv(csv_files[0], index_col=0).to_html(csv_files[0].split("/")[-1].split(".")[0]+".html")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    sys.exit(main())
 | 
				
			||||||
		Loading…
	
		Reference in a new issue