Add llama3 level0 example (#12275)
This commit is contained in:
parent
08cb065370
commit
ec362e6133
3 changed files with 174 additions and 0 deletions
|
|
@ -0,0 +1,77 @@
|
||||||
|
# Run HuggingFace `transformers` Models with Pipeline Optimization on Intel NPU
|
||||||
|
|
||||||
|
In this directory, you will find examples on how to directly run HuggingFace `transformers` models with pipeline optimization on Intel NPUs. See the table blow for verified models.
|
||||||
|
|
||||||
|
## Verified Models
|
||||||
|
|
||||||
|
| Model | Model Link |
|
||||||
|
|------------|----------------------------------------------------------------|
|
||||||
|
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
|
||||||
|
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
|
||||||
|
Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver.
|
||||||
|
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
|
||||||
|
Right click and select **Update Driver** -> **Browse my computer for drivers**. And then manually select the unzipped driver folder to install.
|
||||||
|
|
||||||
|
## 1. Install
|
||||||
|
### 1.1 Installation on Windows
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```cmd
|
||||||
|
conda create -n llm python=3.10
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
:: install ipex-llm with 'npu' option
|
||||||
|
pip install --pre --upgrade ipex-llm[npu]
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. Runtime Configurations
|
||||||
|
|
||||||
|
**Following envrionment variables are required**:
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set BIGDL_USE_NPU=1
|
||||||
|
```
|
||||||
|
|
||||||
|
## 3. Run Models
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs.
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
:: to run Llama-2-7b-chat-hf
|
||||||
|
python llama2.py
|
||||||
|
|
||||||
|
:: to run Meta-Llama-3-8B-Instruct
|
||||||
|
python llama3.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (e.g. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `What is AI?`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
- `--max-output-len MAX_OUTPUT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
|
||||||
|
|
||||||
|
### Sample Output
|
||||||
|
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
||||||
|
|
||||||
|
```log
|
||||||
|
Number of input tokens: 28
|
||||||
|
Generated tokens: 32
|
||||||
|
First token generation time: xxxx s
|
||||||
|
Generation average latency: xxxx ms, (xxxx token/s)
|
||||||
|
Generation time: xxxx s
|
||||||
|
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Input --------------------
|
||||||
|
<s><s> [INST] <<SYS>>
|
||||||
|
|
||||||
|
<</SYS>>
|
||||||
|
|
||||||
|
What is AI? [/INST]
|
||||||
|
-------------------- Output --------------------
|
||||||
|
<s><s> [INST] <<SYS>>
|
||||||
|
|
||||||
|
<</SYS>>
|
||||||
|
|
||||||
|
What is AI? [/INST] AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,97 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
|
||||||
|
DEFAULT_SYSTEM_PROMPT = """\
|
||||||
|
"""
|
||||||
|
|
||||||
|
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
|
||||||
|
system_prompt: str) -> str:
|
||||||
|
prompt_texts = [f'<|begin_of_text|>']
|
||||||
|
|
||||||
|
if system_prompt != '':
|
||||||
|
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|>')
|
||||||
|
|
||||||
|
for history_input, history_response in chat_history:
|
||||||
|
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{history_input.strip()}<|eot_id|>')
|
||||||
|
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n\n{history_response.strip()}<|eot_id|>')
|
||||||
|
|
||||||
|
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n')
|
||||||
|
return ''.join(prompt_texts)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Predict Tokens using `generate()` API for npu model"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--repo-id-or-model-path",
|
||||||
|
type=str,
|
||||||
|
default="meta-llama/Meta-Llama-3-8B-Instruct",
|
||||||
|
help="The huggingface repo id for the Llama3 model to be downloaded"
|
||||||
|
", or the path to the huggingface checkpoint folder",
|
||||||
|
)
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
||||||
|
parser.add_argument("--max-output-len", type=int, default=1024)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
optimize_model=True,
|
||||||
|
pipeline=True,
|
||||||
|
max_output_len=args.max_output_len,
|
||||||
|
attn_implementation="eager")
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
print("-" * 80)
|
||||||
|
print("done")
|
||||||
|
with torch.inference_mode():
|
||||||
|
print("finish to load")
|
||||||
|
for i in range(5):
|
||||||
|
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||||
|
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
print("input length:", len(_input_ids[0]))
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(
|
||||||
|
_input_ids, max_new_tokens=args.n_predict, do_print=True
|
||||||
|
)
|
||||||
|
end = time.time()
|
||||||
|
print(f"Inference time: {end-st} s")
|
||||||
|
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
|
||||||
|
print("-" * 20, "Input", "-" * 20)
|
||||||
|
print(input_str)
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
||||||
|
print("-" * 20, "Output", "-" * 20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
|
print("-" * 80)
|
||||||
|
print("done")
|
||||||
|
print("success shut down")
|
||||||
Loading…
Reference in a new issue