[NPU] Support glm-edge models (#12511)
This commit is contained in:
		
							parent
							
								
									12c78978dd
								
							
						
					
					
						commit
						ea55235cbd
					
				
					 5 changed files with 323 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -11,6 +11,7 @@ In this directory, you will find examples on how to directly run HuggingFace `tr
 | 
			
		|||
| Llama3.2-3B | [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) |
 | 
			
		||||
| Chatglm3 | [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) |
 | 
			
		||||
| Chatglm2 | [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) |
 | 
			
		||||
| GLM-Edge | [THUDM/glm-edge-1.5b-chat](https://huggingface.co/THUDM/glm-edge-1.5b-chat), [THUDM/glm-edge-4b-chat](https://huggingface.co/THUDM/glm-edge-4b-chat) |
 | 
			
		||||
| Qwen2 | [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct), [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) |
 | 
			
		||||
| Qwen2.5 | [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) |
 | 
			
		||||
| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
 | 
			
		||||
| 
						 | 
				
			
			@ -38,6 +39,9 @@ pip install --pre --upgrade ipex-llm[npu]
 | 
			
		|||
 | 
			
		||||
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
 | 
			
		||||
pip install transformers==4.45.0 accelerate==0.33.0
 | 
			
		||||
 | 
			
		||||
:: [optional] for glm-edge-1.5b-chat & glm-edge-4b-chat
 | 
			
		||||
pip install transformers==4.47.0 accelerate==0.26.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## 2. Runtime Configurations
 | 
			
		||||
| 
						 | 
				
			
			@ -94,6 +98,8 @@ The examples below show how to run the **_optimized HuggingFace model implementa
 | 
			
		|||
- [Qwen2.5-7B](./qwen.py)
 | 
			
		||||
- [MiniCPM-1B](./minicpm.py)
 | 
			
		||||
- [MiniCPM-2B](./minicpm.py)
 | 
			
		||||
- [GLM-Edge-1.5B-Chat](./glm.py)
 | 
			
		||||
- [GLM-Edge-4B-Chat](./glm.py)
 | 
			
		||||
- [Baichuan2-7B](./baichuan2.py)
 | 
			
		||||
 | 
			
		||||
### Run
 | 
			
		||||
| 
						 | 
				
			
			@ -125,6 +131,12 @@ python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-1B-sft-bf16" --save-d
 | 
			
		|||
:: to run MiniCPM-2B-sft-bf16
 | 
			
		||||
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-2B-sft-bf16" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run glm-edge-1.5b-chat
 | 
			
		||||
python glm.py --repo-id-or-model-path "THUDM/glm-edge-1.5b-chat" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run glm-edge-4b-chat
 | 
			
		||||
python glm.py --repo-id-or-model-path "THUDM/glm-edge-4b-chat" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Baichuan2-7B-Chat
 | 
			
		||||
python baichuan2.py --repo-id-or-model-path "baichuan-inc/Baichuan2-7B-Chat" --save-directory <converted_model_path>
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										123
									
								
								python/llm/example/NPU/HF-Transformers-AutoModels/LLM/glm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										123
									
								
								python/llm/example/NPU/HF-Transformers-AutoModels/LLM/glm.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,123 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="THUDM/glm-edge-1.5b-chat",
 | 
			
		||||
        help="The huggingface repo id for the glm-edge model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument('--low-bit', type=str, default="sym_int4",
 | 
			
		||||
                        help='Load in low bit to use')
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
             "If path not exists, lowbit model will be saved there. "
 | 
			
		||||
             "Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    if not os.path.exists(args.save_directory):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(
 | 
			
		||||
            model_path,
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            trust_remote_code=True,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            load_in_low_bit=args.low_bit,
 | 
			
		||||
            optimize_model=True,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
            save_directory=args.save_directory
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(args.save_directory)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.save_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            optimize_model=True,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            message = [{"role": "user", "content": args.prompt}]
 | 
			
		||||
 | 
			
		||||
            inputs = tokenizer.apply_chat_template(
 | 
			
		||||
                message,
 | 
			
		||||
                return_tensors="pt",
 | 
			
		||||
                add_generation_prompt=True,
 | 
			
		||||
                return_dict=True,
 | 
			
		||||
            )
 | 
			
		||||
            _input_ids = inputs["input_ids"]
 | 
			
		||||
            
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
 | 
			
		||||
            print(input_str)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -180,6 +180,23 @@ class _BaseAutoModelClass:
 | 
			
		|||
 | 
			
		||||
        logger.info(f"Converting model, it may takes up to several minutes ...")
 | 
			
		||||
 | 
			
		||||
        if hasattr(model, "config") and model.config.model_type == "glm":
 | 
			
		||||
            # convert to llama structure
 | 
			
		||||
            from .npu_models.glm_edge import convert_config, load_weights, convert_state_dict
 | 
			
		||||
            import json
 | 
			
		||||
            original_path = model.config._name_or_path
 | 
			
		||||
            del model
 | 
			
		||||
 | 
			
		||||
            with open(os.path.join(original_path, "config.json")) as f:
 | 
			
		||||
                original_config = json.load(f)
 | 
			
		||||
            config = convert_config(original_config)
 | 
			
		||||
            original_state_dict = load_weights(original_path)
 | 
			
		||||
            new_dict, _ = convert_state_dict(original_state_dict, config,
 | 
			
		||||
                                             original_config.get("partial_rotary_factor", 1.0),
 | 
			
		||||
                                             decouple_tied_embeddings=False)
 | 
			
		||||
            torch.set_default_dtype(config.torch_dtype)
 | 
			
		||||
            model = cls.HF_Model.from_pretrained(original_path, config=config, state_dict=new_dict)
 | 
			
		||||
 | 
			
		||||
        if hasattr(model, "config"):
 | 
			
		||||
            model.config.update({"optimize_model": optimize_model})
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										167
									
								
								python/llm/src/ipex_llm/transformers/npu_models/glm_edge.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										167
									
								
								python/llm/src/ipex_llm/transformers/npu_models/glm_edge.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,167 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
from safetensors.torch import load_file
 | 
			
		||||
from tokenizers import processors
 | 
			
		||||
 | 
			
		||||
from transformers import LlamaConfig, PreTrainedTokenizerFast
 | 
			
		||||
from ipex_llm.transformers.utils import invalidInputError
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
VIT_KEY = "vit_path"  # FIXME: just made at random
 | 
			
		||||
VIT_FILE = "vit_adapter.pt"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_weights(input_dir: str):
 | 
			
		||||
    safetensor_files = [os.path.join(input_dir, x) for x in os.listdir(input_dir)
 | 
			
		||||
                        if x.endswith(".safetensors")]
 | 
			
		||||
    bin_files = [os.path.join(input_dir, x) for x in os.listdir(input_dir) if x.endswith(".bin")]
 | 
			
		||||
 | 
			
		||||
    all_weights = {}
 | 
			
		||||
 | 
			
		||||
    if safetensor_files:
 | 
			
		||||
        if len(safetensor_files) > 1:
 | 
			
		||||
            safetensor_files = sorted(safetensor_files, key=lambda x: int(x.rsplit("-", 3)[1]))
 | 
			
		||||
        for file in safetensor_files:
 | 
			
		||||
            tensors = load_file(file)
 | 
			
		||||
            all_weights.update(tensors)
 | 
			
		||||
        return all_weights
 | 
			
		||||
 | 
			
		||||
    elif bin_files:
 | 
			
		||||
        if len(bin_files) > 1:
 | 
			
		||||
            bin_files = sorted(bin_files, key=lambda x: int(x.rsplit("-", 3)[1]))
 | 
			
		||||
        for file in bin_files:
 | 
			
		||||
            tensors = torch.load(file, map_location="cpu")
 | 
			
		||||
            all_weights.update(tensors)
 | 
			
		||||
        return all_weights
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False, "No .safetensors or .bin files found in the specified directory.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def convert_state_dict(original_state_dict: dict, config: LlamaConfig,
 | 
			
		||||
                       partial_rotary_factor: float, decouple_tied_embeddings=False):
 | 
			
		||||
    hidden_size, num_heads = config.hidden_size, config.num_attention_heads
 | 
			
		||||
    num_key_value_heads = config.num_key_value_heads
 | 
			
		||||
    head_dim = hidden_size // num_heads
 | 
			
		||||
    rotary_dim = int(partial_rotary_factor * head_dim)
 | 
			
		||||
    inv_freq = 1.0 / (config.rope_theta ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim))
 | 
			
		||||
 | 
			
		||||
    # permute for sliced rotary
 | 
			
		||||
    def permute_weight(w, num_heads, rotary_dim):
 | 
			
		||||
        w = w.view(num_heads, head_dim, hidden_size)
 | 
			
		||||
        w, w_pass = w[:, :rotary_dim, :], w[:, rotary_dim:, :]
 | 
			
		||||
        w = w.view(num_heads, rotary_dim // 2, 2, hidden_size).transpose(1, 2)\
 | 
			
		||||
            .reshape(num_heads, rotary_dim, hidden_size)
 | 
			
		||||
        return torch.cat([w, w_pass], dim=1).view(num_heads * head_dim, hidden_size)
 | 
			
		||||
 | 
			
		||||
    def permute_bias(b, num_heads, rotary_dim):
 | 
			
		||||
        b = b.view(num_heads, head_dim)
 | 
			
		||||
        b, b_pass = b[:, :rotary_dim], b[:, rotary_dim:]
 | 
			
		||||
        b = b.view(num_heads, rotary_dim // 2, 2).transpose(1, 2).reshape(num_heads, rotary_dim)
 | 
			
		||||
        return torch.cat([b, b_pass], dim=1).view(num_heads * head_dim)
 | 
			
		||||
 | 
			
		||||
    new_dict, vit_dict = {}, {}
 | 
			
		||||
    param_count = 0
 | 
			
		||||
    index_dict = {"weight_map": {}}
 | 
			
		||||
    for key, value in original_state_dict.items():
 | 
			
		||||
        if "model.vision" in key:  # vit
 | 
			
		||||
            vit_dict[key.replace("model.vision.", "")] = value.detach().clone()
 | 
			
		||||
        elif "q_proj." in key:
 | 
			
		||||
            if "weight" in key:
 | 
			
		||||
                new_dict[key] = permute_weight(value, num_heads, rotary_dim)
 | 
			
		||||
            elif config.attention_bias:  # bias
 | 
			
		||||
                new_dict[key] = permute_bias(value, num_heads, rotary_dim)
 | 
			
		||||
        elif "k_proj." in key:
 | 
			
		||||
            if "weight" in key:
 | 
			
		||||
                new_dict[key] = permute_weight(value, num_key_value_heads, rotary_dim)
 | 
			
		||||
            elif config.attention_bias:  # bias
 | 
			
		||||
                new_dict[key] = permute_bias(value, num_key_value_heads, rotary_dim)
 | 
			
		||||
        elif "v_proj." in key:
 | 
			
		||||
            if "bias" in key and not config.attention_bias:
 | 
			
		||||
                continue
 | 
			
		||||
            new_dict[key] = value
 | 
			
		||||
        elif "o_proj." in key:
 | 
			
		||||
            new_dict[key] = value
 | 
			
		||||
            if config.attention_bias:  # bias
 | 
			
		||||
                new_dict[key.replace("weight", "bias")] = torch.zeros(hidden_size,
 | 
			
		||||
                                                                      dtype=value.dtype)
 | 
			
		||||
        elif "gate_up_proj." in key:
 | 
			
		||||
            gate_proj, up_proj = value.chunk(2, dim=0)
 | 
			
		||||
            new_dict[key.replace("gate_up_proj.", "gate_proj.")] = gate_proj
 | 
			
		||||
            new_dict[key.replace("gate_up_proj.", "up_proj.")] = up_proj
 | 
			
		||||
        else:
 | 
			
		||||
            new_dict[key] = value
 | 
			
		||||
 | 
			
		||||
    for layer_i in range(config.num_hidden_layers):
 | 
			
		||||
        new_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq.clone()
 | 
			
		||||
 | 
			
		||||
    if decouple_tied_embeddings:
 | 
			
		||||
        new_dict["transformer.output_layer.weight"] = \
 | 
			
		||||
            original_state_dict["model.embed_tokens.weight"].clone()
 | 
			
		||||
 | 
			
		||||
    return new_dict, vit_dict
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def convert_config(original_config: dict, decouple_tied_embeddings=False):
 | 
			
		||||
    similar_keys_to_keep = [
 | 
			
		||||
        "num_attention_heads",
 | 
			
		||||
        "hidden_size",
 | 
			
		||||
        "intermediate_size",
 | 
			
		||||
        "num_hidden_layers",
 | 
			
		||||
        "rms_norm_eps",
 | 
			
		||||
        "num_key_value_heads",
 | 
			
		||||
        "vocab_size",
 | 
			
		||||
        "partial_rotary_factor",
 | 
			
		||||
        "rope_theta",
 | 
			
		||||
        "max_position_embeddings",
 | 
			
		||||
        "attention_bias",
 | 
			
		||||
        "torch_dtype",
 | 
			
		||||
        "tie_word_embeddings",
 | 
			
		||||
        "bos_token_id",
 | 
			
		||||
        "eos_token_id",
 | 
			
		||||
        "pad_token_id",
 | 
			
		||||
        "boi_token_id",
 | 
			
		||||
        "eoi_token_id",
 | 
			
		||||
        "vision_config",
 | 
			
		||||
    ]
 | 
			
		||||
    new_config_kwargs = {k: v for k, v in original_config.items() if k in similar_keys_to_keep}
 | 
			
		||||
    if getattr(original_config, "partial_rotary_factor", 1) < 1:
 | 
			
		||||
        new_config_kwargs["rope_dim"] = original_config["head_dim"] * \
 | 
			
		||||
            original_config["partial_rotary_factor"]
 | 
			
		||||
    if decouple_tied_embeddings:
 | 
			
		||||
        new_config_kwargs["tie_word_embeddings"] = False
 | 
			
		||||
    if "vision_config" in original_config:
 | 
			
		||||
        new_config_kwargs["vision_config"] = original_config["vision_config"]
 | 
			
		||||
        new_config_kwargs[VIT_KEY] = VIT_FILE
 | 
			
		||||
    if "bos_token_id" not in new_config_kwargs:
 | 
			
		||||
        new_config_kwargs["bos_token_id"] = None
 | 
			
		||||
 | 
			
		||||
    new_config = LlamaConfig(**new_config_kwargs)
 | 
			
		||||
    return new_config
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def convert_glm_tokenizer(input_dir):
 | 
			
		||||
    fast_tok = PreTrainedTokenizerFast.from_pretrained(input_dir,
 | 
			
		||||
                                                       model_input_names=["input_ids",
 | 
			
		||||
                                                                          "attention_mask"])
 | 
			
		||||
    fast_tok._tokenizer.post_processor = processors.Sequence(
 | 
			
		||||
        [processors.ByteLevel(trim_offsets=False)],
 | 
			
		||||
    )
 | 
			
		||||
    return fast_tok
 | 
			
		||||
| 
						 | 
				
			
			@ -22,7 +22,10 @@ import transformers
 | 
			
		|||
 | 
			
		||||
trans_version = transformers.__version__
 | 
			
		||||
 | 
			
		||||
if trans_version >= "4.45.0":
 | 
			
		||||
if trans_version >= "4.47.0":
 | 
			
		||||
    # TODO
 | 
			
		||||
    pass
 | 
			
		||||
elif trans_version >= "4.45.0":
 | 
			
		||||
    from .benchmark_util_4_45 import BenchmarkWrapper
 | 
			
		||||
elif trans_version >= "4.44.0":
 | 
			
		||||
    from .benchmark_util_4_44 import BenchmarkWrapper
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue