Polish Orca Doc (#6266)

* fix doc

* add tutorial index

* remove

* fix

* remove

* update
This commit is contained in:
Kai Huang 2022-10-24 18:03:39 +08:00 committed by GitHub
parent a66e7adfe0
commit ea164651ee
9 changed files with 38 additions and 21 deletions

View file

@ -26,7 +26,7 @@ subtrees:
subtrees: subtrees:
- entries: - entries:
- file: doc/Orca/Overview/orca - file: doc/Orca/Overview/orca
title: "Orca in 5 miniutes" title: "Orca in 5 minutes"
- file: doc/Orca/Overview/install - file: doc/Orca/Overview/install
title: "Installation" title: "Installation"
- file: doc/Orca/Overview/index - file: doc/Orca/Overview/index
@ -39,7 +39,7 @@ subtrees:
- file: doc/Orca/Overview/distributed-tuning - file: doc/Orca/Overview/distributed-tuning
- file: doc/Orca/Overview/ray - file: doc/Orca/Overview/ray
- file: doc/Orca/QuickStart/index - file: doc/Orca/QuickStart/index
title: "Tutorials" title: "Quick Examples"
subtrees: subtrees:
- entries: - entries:
- file: doc/UseCase/spark-dataframe - file: doc/UseCase/spark-dataframe
@ -48,6 +48,11 @@ subtrees:
- file: doc/Orca/QuickStart/orca-pytorch-distributed-quickstart - file: doc/Orca/QuickStart/orca-pytorch-distributed-quickstart
- file: doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart - file: doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart
- file: doc/Orca/QuickStart/orca-autoxgboost-quickstart - file: doc/Orca/QuickStart/orca-autoxgboost-quickstart
- file: doc/Orca/Tutorial/index
title: "Tutorials"
subtrees:
- entries:
- file: doc/Orca/Tutorial/yarn
- file: doc/Orca/Overview/known_issues - file: doc/Orca/Overview/known_issues
title: "Tips and Known Issues" title: "Tips and Known Issues"
- file: doc/PythonAPI/Orca/index - file: doc/PythonAPI/Orca/index

View file

@ -1,2 +0,0 @@
Orca Key Features
=================================

View file

@ -1,7 +1,7 @@
# Installation # Installation
## To use Distributed Data processing, training, and/or inference ## To use basic Orca features
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment. We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment.
```bash ```bash
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like. conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
@ -14,32 +14,38 @@ You can install bigdl-orca nightly build version using
pip install --pre --upgrade bigdl-orca pip install --pre --upgrade bigdl-orca
``` ```
## To use RayOnSpark ## To additionally use RayOnSpark
There're some additional dependencies required for running [RayOnSpark](ray.md). Use extra key `[ray]` to install. If you wish to run [RayOnSpark](ray.md) or [sklearn-style Estimator APIs in Orca](distributed-training-inference.md) with "ray" backend, use the extra key `[ray]` during the installation above:
```bash ```bash
pip install bigdl-orca[ray] pip install bigdl-orca[ray]
``` ```
or to install nightly build, use or for the nightly build version, use
```bash ```bash
pip install --pre --upgrade bigdl-orca[ray] pip install --pre --upgrade bigdl-orca[ray]
``` ```
## To use Orca AutoML Note that with the extra key of [ray], `pip` will automatically install the additional dependencies for RayOnSpark,
including `ray[default]==1.9.2`, `aiohttp==3.8.1`, `async-timeout==4.0.1`, `aioredis==1.3.1`, `hiredis==2.0.0`, `prometheus-client==0.11.0`, `psutil`, `setproctitle`.
There're some additional dependencies required for Orca AutoML support. Use extra key `[automl]` to install. ## To additionally use AutoML
If you wish to run AutoML, use the extra key `[automl]` during the installation above:
```bash ```bash
pip install bigdl-orca[automl] pip install bigdl-orca[automl]
```` ````
or for the nightly build version, use
```bash
pip install --pre --upgrade bigdl-orca[automl]
```
_Note that with extra key of [automl], `pip` will automatically install the additional dependencies for distributed hyper-parameter tuning, Note that with the extra key of [automl], `pip` will automatically install the additional dependencies for distributed hyper-parameter tuning,
including `ray[tune]==1.9.2`, `scikit-learn`, `tensorboard`, `xgboost`._ including `ray[tune]==1.9.2`, `scikit-learn`, `tensorboard`, `xgboost` together with the dependencies given by the extra key [ray].
To use [Pytorch Estimator](#pytorch-autoestimator), you need to install Pytorch with `pip install torch==1.8.1`. - To use [Pytorch Estimator](#pytorch-autoestimator), you need to install Pytorch with `pip install torch==1.8.1`.
To use [TensorFlow/Keras AutoEstimator](#tensorflow-keras-autoestimator), you need to install Tensorflow with `pip install tensorflow==1.15.0`.
- To use [TensorFlow/Keras AutoEstimator](#tensorflow-keras-autoestimator), you need to install TensorFlow with `pip install tensorflow==1.15.0`.

View file

@ -6,9 +6,11 @@ Most AI projects start with a Python notebook running on a single laptop; howeve
--- ---
### Tensorflow Bite-sized Example ### TensorFlow Bite-sized Example
This section uses TensorFlow 1.15, and you should install TensorFlow before running this example: First of all, follow the steps [here](install.md#to-use-basic-orca-features) to install Orca in your environment.
This section uses TensorFlow 1.15, and you should also install TensorFlow before running this example:
```bash ```bash
pip install tensorflow==1.15 pip install tensorflow==1.15
``` ```

View file

@ -14,7 +14,7 @@ _**Note:** BigDL has been tested on Ray 1.9.2 and you are highly recommended to
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment. We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the Python environment.
When installing bigdl-orca with pip, you can specify the extras key `[ray]` to install the additional dependencies When installing bigdl-orca with pip, you can specify the extras key `[ray]` to install the additional dependencies
for running Ray (i.e. `ray==1.9.2`, `psutil`, `aiohttp==3.7.0`, `aioredis==1.1.0`, `setproctitle`, `hiredis==1.1.0`, `async-timeout==3.0.1`): for running Ray (i.e. `ray[default]==1.9.2`, `aiohttp==3.8.1`, `async-timeout==4.0.1`, `aioredis==1.3.1`, `hiredis==2.0.0`, `prometheus-client==0.11.0`, `psutil`, `setproctitle`):
```bash ```bash
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like. conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.

View file

@ -1,4 +1,4 @@
# Orca Tutorial # Orca Quickstarts
- [**Orca TensorFlow 1.15 Quickstart**](./orca-tf-quickstart.html) - [**Orca TensorFlow 1.15 Quickstart**](./orca-tf-quickstart.html)

View file

@ -0,0 +1,6 @@
Orca Tutorials
=================================
* `Run on Hadoop/YARN clusters <yarn.html>`_
* `Run on Azure Databricks <../../UserGuide/databricks.html>`_
* `Run on Google Colab <../../UserGuide/colab.html>`_

View file

@ -1,4 +1,4 @@
# Running BigDL-Orca on Hadoop/YARN Clusters # Run on Hadoop/YARN Clusters
This tutorial provides a step-by-step guide on how to run BigDL-Orca programs on Apache Hadoop/YARN clusters, using a [PyTorch Fashin-MNIST program](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/) as a working example. This tutorial provides a step-by-step guide on how to run BigDL-Orca programs on Apache Hadoop/YARN clusters, using a [PyTorch Fashin-MNIST program](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/pytorch/FashionMNIST/) as a working example.

View file

@ -1,4 +1,4 @@
# Use Spark Dataframe for Deep Learning # Use Spark DataFrames for Deep Learning
--- ---