Refactor baichuan1 7B and 13B (#11258)

This commit is contained in:
Yishuo Wang 2024-06-07 14:29:20 +08:00 committed by GitHub
parent 1aa9c9597a
commit ea0d03fd28
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 253 additions and 822 deletions

View file

@ -680,6 +680,11 @@ def _optimize_pre(model):
if model.lm_head.weight.data.device != "meta":
norm_weight = nn.functional.normalize(lm_head_weight_data)
model.lm_head.weight.data = norm_weight
# for baichuan2-7B
if model.config.hidden_size in [4096, 2048]:
from ipex_llm.transformers.models.baichuan import pre_compute_inv_freq
model.apply(pre_compute_inv_freq)
# for yuan 2.0
if model.config.model_type == "yuan":
from ipex_llm.transformers.models.yuan import merge_qk
@ -703,12 +708,6 @@ def _optimize_pre(model):
model.apply(pre_compute_inv_freq)
from ipex_llm.transformers.models.phi3 import split_mlp
model.apply(split_mlp)
# for baichuan2
if model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
if model.config.hidden_size in [4096, 2048]:
# baichuan2-7B
from ipex_llm.transformers.models.baichuan2 import pre_compute_inv_freq
model.apply(pre_compute_inv_freq)
# for qwen2
if model.config.model_type == "qwen2":
from ipex_llm.transformers.models.qwen2 import merge_qkv
@ -1125,84 +1124,39 @@ def _optimize_post(model, lightweight_bmm=False):
module.FalconAttention,
falcon_attention_forward
)
elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
# baichuan2
if model.config.hidden_size in [4096, 2048]:
# baichuan2-7B
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.baichuan2 import baichuan_attention_forward_7b
from ipex_llm.transformers.models.baichuan2 import baichuan_mlp_forward
convert_forward(model,
module.Attention,
baichuan_attention_forward_7b
)
convert_forward(model,
module.RMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.MLP,
baichuan_mlp_forward)
elif model.config.hidden_size == 5120:
# baichuan2-13B
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.baichuan2 import baichuan_attention_forward_13b
from ipex_llm.transformers.models.baichuan2 import baichuan_13b_rms_norm_forward
from ipex_llm.transformers.models.baichuan2 import baichuan_mlp_forward
from ipex_llm.transformers.models.baichuan2 import baichuan_13b_get_alibi_mask
convert_forward(model,
module.BaichuanAttention,
baichuan_attention_forward_13b
)
# baichuan2-13B's RMSNorm is a little different
convert_forward(model,
module.RMSNorm,
baichuan_13b_rms_norm_forward)
convert_forward(model,
module.MLP,
baichuan_mlp_forward)
if hasattr(model.model, 'get_alibi_mask_orig'):
# deepspeed rewrite "get_alibi_mask" to support baichuan
# https://github.com/microsoft/DeepSpeed/pull/4721
replace_func(model,
module.BaichuanModel,
"get_alibi_mask_orig",
baichuan_13b_get_alibi_mask)
else:
replace_func(model,
module.BaichuanModel,
"get_alibi_mask",
baichuan_13b_get_alibi_mask)
elif model.config.model_type == "baichuan":
# baichuan1
if model.config.hidden_size == 4096:
# baichuan-7B
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.baichuan import baichuan_mlp_forward
convert_forward(model, module.MLP, baichuan_mlp_forward)
if model.config.hidden_size in [4096, 2048]:
# baichuan-7B and baichuan2-7B
from ipex_llm.transformers.models.baichuan import baichuan_attention_forward_7b
convert_forward(model,
module.Attention,
baichuan_attention_forward_7b
)
convert_forward(model,
module.RMSNorm,
llama_rms_norm_forward)
convert_forward(model, module.Attention, baichuan_attention_forward_7b)
convert_forward(model, module.RMSNorm, llama_rms_norm_forward)
elif model.config.hidden_size == 5120:
# baichuan-13B
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
# baichuan-13B and baichuan2-13B
from ipex_llm.transformers.models.baichuan import baichuan_attention_forward_13b
from ipex_llm.transformers.models.baichuan2 import baichuan_13b_rms_norm_forward
convert_forward(model,
module.BaichuanAttention,
baichuan_attention_forward_13b
)
# baichuan-13B's RMSNorm is a little different
convert_forward(model,
module.RMSNorm,
baichuan_13b_rms_norm_forward)
from ipex_llm.transformers.models.baichuan import baichuan_13b_rms_norm_forward
convert_forward(model, module.BaichuanAttention, baichuan_attention_forward_13b)
convert_forward(model, module.RMSNorm, baichuan_13b_rms_norm_forward)
if model.config.vocab_size == 125696:
# baichaun2-13B
from ipex_llm.transformers.models.baichuan import baichuan_13b_get_alibi_mask
if hasattr(model.model, 'get_alibi_mask_orig'):
# deepspeed rewrite "get_alibi_mask" to support baichuan
# https://github.com/microsoft/DeepSpeed/pull/4721
replace_func(model,
module.BaichuanModel,
"get_alibi_mask_orig",
baichuan_13b_get_alibi_mask)
else:
replace_func(model,
module.BaichuanModel,
"get_alibi_mask",
baichuan_13b_get_alibi_mask)
elif model.config.model_type == "gpt_neox":
from ipex_llm.transformers.models.gptneox import gptneox_attention_forward
convert_forward(model,

View file

@ -14,30 +14,61 @@
# limitations under the License.
# This file is adapted from
# https://huggingface.co/baichuan-inc/Baichuan-7B/blob/c1a5c7d5b7f50ecc51bb0e08150a9f12e5656756/modeling_baichuan.py
# https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/cb7fc748b78b7ea99772e4cf76db155729ce774e/modeling_baichuan.py
# and
# https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/a4a558127068f2ce965aa56aeb826bf501a68970/modeling_baichuan.py
# https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py
import math
from typing import List, Optional, Tuple, Union
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
append_kv_cache, is_enough_kv_cache_room_4_31
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
from torch.nn import functional as F
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
import warnings
import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
def pre_compute_inv_freq(module: torch.nn.Module):
if module.__class__.__name__ == "RotaryEmbedding":
inv_freq = module.inv_freq
del module.inv_freq
module.register_buffer("inv_freq", inv_freq, persistent=False)
def baichuan_13b_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(self.weight, x_2d, self.epsilon)
return output.reshape(hidden_states.shape)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
return self.weight * hidden_states.to(input_dtype)
def baichuan_mlp_forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
x_2d = x.view(-1, x.shape[-1])
qtype = getattr(self.gate_proj, "qtype", None)
if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
import xe_linear
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.down_proj(xe_linear.mlp_forward_xpu(
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
SILU, qtype
))
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
def baichuan_attention_forward_7b(
@ -48,269 +79,82 @@ def baichuan_attention_forward_7b(
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.W_pack, hidden_states):
forward_function = baichuan_attention_forward_7b_quantized
else:
forward_function = baichuan_attention_forward_7b_origin
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache
)
def baichuan_attention_forward_7b_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
):
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
proj = self.W_pack(hidden_states)
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
# batch_size x source_len x hidden_size
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# batch_size x target_len x head_size
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# batch_size x source_len x hidden_size
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
qkv = self.W_pack(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)
kv_seq_len = key_states.shape[-2]
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"baichuan")
kv_seq_len += past_key_value[0].shape[2]
# IPEX-LLM OPT: fuse rope
if should_use_fuse_rope(hidden_states, position_ids, self.training):
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "baichuan")
# [bsz, nh, t, hd]
query_states = query_states.to(hidden_states.dtype)
key_states = key_states.to(hidden_states.dtype)
if past_key_value is None:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}"
f", but is {attn_weights.size()}"
)
if attention_mask is not None:
invalidInputError(
attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
kv_seq_len = key_states.shape[-2]
if use_cache:
k_cache, v_cache = init_fp8_kv_cache(
bsz, self.num_heads, kv_seq_len, self.head_dim,
device=device
)
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states,
value_states)
past_key_value = (key_states, value_states)
else:
k_cache, v_cache = past_key_value
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
kv_seq_len = key_states.shape[-2]
past_key_value = (key_states, value_states)
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
attn_weights = attn_weights / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(
False,
f"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}"
f", but is {attn_weights.size()}"
)
if attention_mask is not None:
invalidInputError(
attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
else:
import xe_addons
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
attn_weights = None
invalidInputError(
attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
f"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f"but is {attn_output.size()}"
# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
def baichuan_attention_forward_7b_origin(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
proj = self.W_pack(hidden_states)
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
# batch_size x source_len x hidden_size
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# batch_size x target_len x head_size
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# batch_size x source_len x hidden_size
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
enough_kv_room = True
if past_key_value is not None:
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
kv_seq_len += past_key_value[0].shape[-2]
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"baichuan")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "baichuan")
# [bsz, nh, t, hd]
# if past_key_value is not None:
# # reuse k, v, self_attention
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
if past_key_value is not None:
# reuse k, v, self_attention
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = (key_states, value_states) if use_cache else None
if self.training:
warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
# IPEX-LLM OPT: sdp
attn_weights = None
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True)
attn_weights = None
elif not self.training and not hidden_states.requires_grad and \
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
invalidInputError(False,
f"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}"
f", but is {attn_weights.size()}")
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
f"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
f"but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
@ -318,7 +162,7 @@ def baichuan_attention_forward_7b_origin(
if not output_attentions:
attn_weights = None
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
return attn_output, attn_weights, past_key_value
def baichuan_attention_forward_13b(
@ -329,101 +173,57 @@ def baichuan_attention_forward_13b(
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.W_pack, hidden_states):
forward_function = baichuan_attention_forward_13b_quantized
else:
forward_function = baichuan_attention_forward_13b_origin
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache
)
def baichuan_attention_forward_13b_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
proj = self.W_pack(hidden_states)
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
qkv = self.W_pack(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)
kv_seq_len = key_states.shape[-2]
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
kv_seq_len += past_key_value[0].shape[2]
if past_key_value is None:
# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states, value_states) if use_cache else None
if self.training:
warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
if attention_mask is not None:
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -q_len:, :]
else:
attention_mask = attention_mask[None, :, -q_len:, :]
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
attn_weights = None
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
attn_weights = attn_weights.to(query_states.dtype)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
kv_seq_len = key_states.shape[-2]
if use_cache:
k_cache, v_cache = init_fp8_kv_cache(
bsz, self.num_heads, kv_seq_len, self.head_dim,
device=device
)
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
past_key_value = (key_states, value_states)
else:
k_cache, v_cache = past_key_value
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states)
kv_seq_len = key_states.shape[-2]
past_key_value = (key_states, value_states)
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
else:
import xe_addons
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
attn_weights = attn_weights / math.sqrt(self.head_dim)
if attention_mask is not None:
if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
if query_states.size(2) != 1 or query_states.device.type != 'xpu':
attn_output = torch.matmul(attn_weights, value_states)
else:
import xe_addons
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights,
value_states)
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
@ -434,90 +234,92 @@ def baichuan_attention_forward_13b_quantized(
return attn_output, attn_weights, past_key_value
def baichuan_attention_forward_13b_origin(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
def _get_interleave(n):
def _get_interleave_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
if math.log2(n).is_integer():
return _get_interleave_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
_get_interleave_power_of_2(closest_power_of_2)
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
proj = self.W_pack(hidden_states)
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
enough_kv_room = True
if past_key_value is not None:
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
kv_seq_len += past_key_value[0].shape[-2]
def _fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
# if past_key_value is not None:
# # reuse k, v, self_attention
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
if past_key_value is not None:
# reuse k, v, self_attention
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
_future_mask = _future_mask.unsqueeze(0) + alibi
new_future_mask = _future_mask.to(tensor)
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = (key_states, value_states) if use_cache else None
def baichuan_13b_gen_alibi_mask(tensor, n_head, max_pos):
slopes = torch.Tensor(_get_interleave(n_head)).to(tensor.dtype)
position_point = torch.arange(max_pos) - max_pos + 1
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
alibi = alibi.view(n_head, 1, max_pos)
alibi_mask = torch.triu(
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1).to(tensor.dtype)
alibi_mask = alibi_mask.unsqueeze(0) + alibi
if tensor.device.type == "xpu":
alibi_mask = alibi_mask.to(tensor.device)
return alibi_mask
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
MASK_BLOCK_SIZE = 512
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past):
if self.training:
slopes = torch.Tensor(_get_interleave(self.n_head))
position_point = (
torch.arange(seq_length_with_past) - seq_length_with_past + 1
)
position_point = (
position_point.unsqueeze(0)
.unsqueeze(0)
.expand(self.n_head, seq_length_with_past, -1)
)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
-1, -2
)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
mask = _buffered_future_mask(
tensor, seq_length_with_past, alibi, self.n_head
)
else:
if self.first_run:
# Override the default max_cache_pos=4096 for memory considerations
self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE
self.first_run = False
self.register_buffer(
"future_mask",
baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos),
persistent=False,
)
if seq_length_with_past > self.max_cache_pos:
# When max_cache_pos is not enough for current sequence length,
# increase by MASK_BLOCK_SIZE and recalculate future_mask.
self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE
self.register_buffer(
"future_mask",
baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos),
persistent=False,
)
mask = self.future_mask[
: self.n_head, :seq_length_with_past, :seq_length_with_past
]
return mask

View file

@ -1,325 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is adapted from
# https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/cb7fc748b78b7ea99772e4cf76db155729ce774e/modeling_baichuan.py
# and
# https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py
import math
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch.nn import functional as F
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
import warnings
def pre_compute_inv_freq(module: torch.nn.Module):
if module.__class__.__name__ == "RotaryEmbedding":
inv_freq = module.inv_freq
del module.inv_freq
module.register_buffer("inv_freq", inv_freq, persistent=False)
def baichuan_13b_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(self.weight, x_2d, self.epsilon)
return output.reshape(hidden_states.shape)
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
return self.weight * hidden_states.to(input_dtype)
def baichuan_mlp_forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
x_2d = x.view(-1, x.shape[-1])
qtype = getattr(self.gate_proj, "qtype", None)
if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla:
import xe_linear
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.down_proj(xe_linear.mlp_forward_xpu(
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
SILU, qtype
))
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
def baichuan_attention_forward_7b(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
):
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
qkv = self.W_pack(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]
# IPEX-LLM OPT: fuse rope
if should_use_fuse_rope(hidden_states, position_ids, self.training):
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "baichuan")
query_states = query_states.to(hidden_states.dtype)
key_states = key_states.to(hidden_states.dtype)
# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states, value_states) if use_cache else None
if self.training:
warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
# IPEX-LLM OPT: sdp
attn_weights = None
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def baichuan_attention_forward_13b(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
qkv = self.W_pack(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]
# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states, value_states) if use_cache else None
if self.training:
warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
if attention_mask is not None:
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -q_len:, :]
else:
attention_mask = attention_mask[:, None, -q_len:, :]
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
attn_weights = None
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = attn_weights.to(query_states.dtype)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _get_interleave(n):
def _get_interleave_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return _get_interleave_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
_get_interleave_power_of_2(closest_power_of_2)
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
def _fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
_future_mask = _future_mask.unsqueeze(0) + alibi
new_future_mask = _future_mask.to(tensor)
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
def baichuan_13b_gen_alibi_mask(tensor, n_head, max_pos):
slopes = torch.Tensor(_get_interleave(n_head)).to(tensor.dtype)
position_point = torch.arange(max_pos) - max_pos + 1
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
alibi = alibi.view(n_head, 1, max_pos)
alibi_mask = torch.triu(
_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1).to(tensor.dtype)
alibi_mask = alibi_mask.unsqueeze(0) + alibi
if tensor.device.type == "xpu":
alibi_mask = alibi_mask.to(tensor.device)
return alibi_mask
MASK_BLOCK_SIZE = 512
def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past):
if self.training:
slopes = torch.Tensor(_get_interleave(self.n_head))
position_point = (
torch.arange(seq_length_with_past) - seq_length_with_past + 1
)
position_point = (
position_point.unsqueeze(0)
.unsqueeze(0)
.expand(self.n_head, seq_length_with_past, -1)
)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
-1, -2
)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
mask = _buffered_future_mask(
tensor, seq_length_with_past, alibi, self.n_head
)
else:
if self.first_run:
# Override the default max_cache_pos=4096 for memory considerations
self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE
self.first_run = False
self.register_buffer(
"future_mask",
baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos),
persistent=False,
)
if seq_length_with_past > self.max_cache_pos:
# When max_cache_pos is not enough for current sequence length,
# increase by MASK_BLOCK_SIZE and recalculate future_mask.
self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE
self.register_buffer(
"future_mask",
baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos),
persistent=False,
)
mask = self.future_mask[
: self.n_head, :seq_length_with_past, :seq_length_with_past
]
return mask