axolotl lora example (#10789)
* Add axolotl lora example * Modify readme * Add comments in yml
This commit is contained in:
parent
14ca42a048
commit
e90e31719f
3 changed files with 95 additions and 1 deletions
|
|
@ -52,7 +52,25 @@ For more details, please refer [hfhuboffline](https://huggingface.co/docs/huggin
|
||||||
|
|
||||||
### 3. Finetune Llama-2-7B
|
### 3. Finetune Llama-2-7B
|
||||||
|
|
||||||
This example shows how to run [Alpaca QLoRA finetune on Llama-2](https://github.com/artidoro/qlora) directly on Intel GPU, based on [axolotl Llama-2 qlora example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/qlora.yml). Note that only Llama-2-7B QLora example is verified on Intel ARC 770 with 16GB memory.
|
This example shows how to run [Alpaca LoRA training](https://github.com/tloen/alpaca-lora/tree/main) and [Alpaca QLoRA finetune](https://github.com/artidoro/qlora) directly on Intel GPU. Note that only Llama-2-7B LoRA and QLoRA examples are verified on Intel ARC 770 with 16GB memory.
|
||||||
|
|
||||||
|
#### 3.1 Alpaca LoRA
|
||||||
|
|
||||||
|
Based on [axolotl Llama-2 LoRA example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/lora.yml).
|
||||||
|
|
||||||
|
```
|
||||||
|
accelerate launch finetune.py lora.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
In v0.4.0, you can also use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`.
|
||||||
|
|
||||||
|
```
|
||||||
|
accelerate launch train.py lora.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 3.2 Alpaca QLoRA
|
||||||
|
|
||||||
|
Based on [axolotl Llama-2 QLoRA example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/qlora.yml).
|
||||||
|
|
||||||
Modify parameters in `qlora.yml` based on your requirements. Then, launch finetuning with the following command.
|
Modify parameters in `qlora.yml` based on your requirements. Then, launch finetuning with the following command.
|
||||||
|
|
||||||
|
|
@ -66,6 +84,8 @@ In v0.4.0, you can also use `train.py` instead of `-m axolotl.cli.train` or `fin
|
||||||
accelerate launch train.py qlora.yml
|
accelerate launch train.py qlora.yml
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### 3.3 Expected Output
|
||||||
|
|
||||||
Output in console
|
Output in console
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
|
||||||
70
python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml
Normal file
70
python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml
Normal file
|
|
@ -0,0 +1,70 @@
|
||||||
|
# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/examples/llama-2/lora.yml
|
||||||
|
base_model: NousResearch/Llama-2-7b-hf
|
||||||
|
model_type: LlamaForCausalLM
|
||||||
|
tokenizer_type: LlamaTokenizer
|
||||||
|
|
||||||
|
load_in_8bit: false
|
||||||
|
load_in_4bit: true
|
||||||
|
strict: false
|
||||||
|
|
||||||
|
datasets:
|
||||||
|
- path: mhenrichsen/alpaca_2k_test
|
||||||
|
type: alpaca
|
||||||
|
dataset_prepared_path:
|
||||||
|
val_set_size: 0.05
|
||||||
|
output_dir: ./lora-out
|
||||||
|
|
||||||
|
sequence_len: 4096
|
||||||
|
sample_packing: true
|
||||||
|
pad_to_sequence_len: true
|
||||||
|
|
||||||
|
adapter: lora
|
||||||
|
lora_model_dir:
|
||||||
|
lora_r: 16
|
||||||
|
lora_alpha: 16
|
||||||
|
lora_dropout: 0.05
|
||||||
|
lora_target_linear: true
|
||||||
|
lora_fan_in_fan_out:
|
||||||
|
|
||||||
|
wandb_project:
|
||||||
|
wandb_entity:
|
||||||
|
wandb_watch:
|
||||||
|
wandb_name:
|
||||||
|
wandb_log_model:
|
||||||
|
|
||||||
|
gradient_accumulation_steps: 4
|
||||||
|
micro_batch_size: 1
|
||||||
|
num_epochs: 4
|
||||||
|
# adamw_bnb_8bit will lead to OOM
|
||||||
|
# optimizer: adamw_bnb_8bit
|
||||||
|
optimizer: adamw_torch
|
||||||
|
lr_scheduler: cosine
|
||||||
|
learning_rate: 0.0002
|
||||||
|
|
||||||
|
train_on_inputs: false
|
||||||
|
group_by_length: false
|
||||||
|
bf16: true
|
||||||
|
fp16: false
|
||||||
|
tf32: false
|
||||||
|
|
||||||
|
gradient_checkpointing: true
|
||||||
|
early_stopping_patience:
|
||||||
|
resume_from_checkpoint:
|
||||||
|
local_rank:
|
||||||
|
logging_steps: 1
|
||||||
|
xformers_attention:
|
||||||
|
# flash_attention is not supported
|
||||||
|
flash_attention: false
|
||||||
|
s2_attention:
|
||||||
|
|
||||||
|
warmup_steps: 10
|
||||||
|
evals_per_epoch: 4
|
||||||
|
eval_table_size:
|
||||||
|
eval_max_new_tokens: 128
|
||||||
|
saves_per_epoch: 1
|
||||||
|
debug:
|
||||||
|
deepspeed:
|
||||||
|
weight_decay: 0.0
|
||||||
|
fsdp:
|
||||||
|
fsdp_config:
|
||||||
|
special_tokens:
|
||||||
|
|
@ -38,6 +38,9 @@ wandb_log_model:
|
||||||
gradient_accumulation_steps: 4
|
gradient_accumulation_steps: 4
|
||||||
micro_batch_size: 1
|
micro_batch_size: 1
|
||||||
num_epochs: 4
|
num_epochs: 4
|
||||||
|
# paged_adamw_32bit is not supported
|
||||||
|
# due to bitsandbytes issue https://github.com/TimDettmers/bitsandbytes/issues/1180
|
||||||
|
# optimizer: paged_adamw_32bit
|
||||||
optimizer: adamw_torch
|
optimizer: adamw_torch
|
||||||
lr_scheduler: cosine
|
lr_scheduler: cosine
|
||||||
learning_rate: 0.0002
|
learning_rate: 0.0002
|
||||||
|
|
@ -54,6 +57,7 @@ resume_from_checkpoint:
|
||||||
local_rank:
|
local_rank:
|
||||||
logging_steps: 1
|
logging_steps: 1
|
||||||
xformers_attention:
|
xformers_attention:
|
||||||
|
# flash_attention is not supported
|
||||||
flash_attention: false
|
flash_attention: false
|
||||||
|
|
||||||
warmup_steps: 10
|
warmup_steps: 10
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue