Add Stable Diffusion examples on GPU and CPU (#11166)

* add sdxl and lcm-lora

* readme

* modify

* add cpu

* add license

* modify

* add file
This commit is contained in:
ivy-lv11 2024-06-12 16:33:25 +08:00 committed by GitHub
parent f224e98297
commit e7a4e2296f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 371 additions and 2 deletions

View file

@ -12,7 +12,7 @@ This folder contains examples of running IPEX-LLM on Intel CPU:
- [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel CPUs
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel CPUs
- [StableDiffusion-Models](StableDiffusion): running **stable diffusion** models on Intel CPUs.
## System Support
**Hardware**:

View file

@ -0,0 +1,45 @@
# Stable Diffusion
In this directory, you will find examples on how to run StableDiffusion models on CPU.
### 1. Installation
#### 1.1. Install IPEX-LLM
Follow the instructions in [IPEX-LLM CPU installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_cpu.html) to install ipex-llm. We recommend to use miniconda to manage your python environment.
#### 1.2 Install dependencies for Stable Diffusion
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
```bash
conda activate diffusion
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
pip install setuptools==69.5.1
```
### 2. Examples
#### 2.1 StableDiffusion XL Example
The example shows how to run StableDiffusion XL example on Intel CPU.
```bash
python ./sdxl.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-cpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.
The sample output image looks like below.
![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-cpu.png)
#### 4.2 LCM-LoRA Example
The example shows how to performing inference with LCM-LoRA on Intel CPU.
```bash
python ./lora-lcm.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-cpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.

View file

@ -0,0 +1,55 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora
import torch
from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm
import argparse
def main(args):
pipe = DiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
).to("cpu")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights(args.lora_weights_path)
generator = torch.manual_seed(42)
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
image.save(args.save_path)
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
help='The huggingface repo id for the lcm lora sdxl checkpoint')
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-cpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=4,
help="Number of inference steps")
args = parser.parse_args()
main(args)

View file

@ -0,0 +1,47 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl
from diffusers import AutoPipelineForText2Image
import torch
import ipex_llm
import numpy as np
from PIL import Image
import argparse
def main(args):
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.float16,
use_safetensors=True
).to("cpu")
image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
image.save(args.save_path)
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="sdxl-cpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=20,
help="Number of inference steps")
args = parser.parse_args()
main(args)

View file

@ -14,7 +14,8 @@ This folder contains examples of running IPEX-LLM on Intel GPU:
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics.
- [StableDiffusion](StableDiffusion): running **stable diffusion** with IPEX-LLM on Intel GPUs.
## System Support

View file

@ -0,0 +1,119 @@
# Stable Diffusion
In this directory, you will find examples on how to run StableDiffusion models on [Intel GPUs](../README.md).
### 1. Installation
#### 1.1 Install IPEX-LLM
Follow the instructions in IPEX-GPU installation guides ([Linux Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), [Windows Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html)) according to your system to install IPEX-LLM. After the installation, you should have created a conda environment, named diffusion for instance.
#### 1.2 Install dependencies for Stable Diffusion
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
```bash
conda activate diffusion
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
```
### 2. Configures OneAPI environment variables for Linux
> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```
</details>
<details>
<summary>For Intel Data Center GPU Max Series</summary>
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
</details>
<details>
<summary>For Intel iGPU</summary>
```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```
</details>
#### 3.2 Configurations for Windows
<details>
<summary>For Intel iGPU</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
</details>
<details>
<summary>For Intel Arc™ A-Series Graphics</summary>
```cmd
set SYCL_CACHE_PERSISTENT=1
```
</details>
> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Examples
#### 4.1 StableDiffusion XL Example
The example shows how to run StableDiffusion XL example on Intel GPU.
```bash
python ./sdxl.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-gpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.
The sample output image looks like below.
![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-gpu.png)
#### 4.2 LCM-LoRA Example
The example shows how to performing inference with LCM-LoRA on Intel GPU.
```bash
python ./lora-lcm.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-gpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.

View file

@ -0,0 +1,55 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora
import torch
from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm
import argparse
def main(args):
pipe = DiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
).to("xpu")
# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
# load LCM-LoRA
pipe.load_lora_weights(args.lora_weights_path)
generator = torch.manual_seed(42)
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
image.save(args.save_path)
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
help='The huggingface repo id for the lcm lora sdxl checkpoint')
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-gpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=4,
help="Number of inference steps")
args = parser.parse_args()
main(args)

View file

@ -0,0 +1,47 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl
from diffusers import AutoPipelineForText2Image
import torch
import ipex_llm
import numpy as np
from PIL import Image
import argparse
def main(args):
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
use_safetensors=True
).to("xpu")
image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
image.save(args.save_path)
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="sdxl-gpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=20,
help="Number of inference steps")
args = parser.parse_args()
main(args)