Add Stable Diffusion examples on GPU and CPU (#11166)
* add sdxl and lcm-lora * readme * modify * add cpu * add license * modify * add file
This commit is contained in:
parent
f224e98297
commit
e7a4e2296f
8 changed files with 371 additions and 2 deletions
|
|
@ -12,7 +12,7 @@ This folder contains examples of running IPEX-LLM on Intel CPU:
|
||||||
- [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation
|
- [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation
|
||||||
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel CPUs
|
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel CPUs
|
||||||
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel CPUs
|
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel CPUs
|
||||||
|
- [StableDiffusion-Models](StableDiffusion): running **stable diffusion** models on Intel CPUs.
|
||||||
|
|
||||||
## System Support
|
## System Support
|
||||||
**Hardware**:
|
**Hardware**:
|
||||||
|
|
|
||||||
45
python/llm/example/CPU/StableDiffusion/README.md
Normal file
45
python/llm/example/CPU/StableDiffusion/README.md
Normal file
|
|
@ -0,0 +1,45 @@
|
||||||
|
# Stable Diffusion
|
||||||
|
In this directory, you will find examples on how to run StableDiffusion models on CPU.
|
||||||
|
|
||||||
|
### 1. Installation
|
||||||
|
#### 1.1. Install IPEX-LLM
|
||||||
|
Follow the instructions in [IPEX-LLM CPU installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_cpu.html) to install ipex-llm. We recommend to use miniconda to manage your python environment.
|
||||||
|
|
||||||
|
#### 1.2 Install dependencies for Stable Diffusion
|
||||||
|
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
|
||||||
|
```bash
|
||||||
|
conda activate diffusion
|
||||||
|
pip install diffusers["torch"] transformers
|
||||||
|
pip install -U PEFT transformers
|
||||||
|
pip install setuptools==69.5.1
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Examples
|
||||||
|
|
||||||
|
#### 2.1 StableDiffusion XL Example
|
||||||
|
The example shows how to run StableDiffusion XL example on Intel CPU.
|
||||||
|
```bash
|
||||||
|
python ./sdxl.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
|
||||||
|
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-cpu.png`.
|
||||||
|
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.
|
||||||
|
|
||||||
|
The sample output image looks like below.
|
||||||
|

|
||||||
|
|
||||||
|
#### 4.2 LCM-LoRA Example
|
||||||
|
The example shows how to performing inference with LCM-LoRA on Intel CPU.
|
||||||
|
```bash
|
||||||
|
python ./lora-lcm.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
|
||||||
|
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
|
||||||
|
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-cpu.png`.
|
||||||
|
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.
|
||||||
55
python/llm/example/CPU/StableDiffusion/lora-lcm.py
Normal file
55
python/llm/example/CPU/StableDiffusion/lora-lcm.py
Normal file
|
|
@ -0,0 +1,55 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers import DiffusionPipeline, LCMScheduler
|
||||||
|
import ipex_llm
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
pipe = DiffusionPipeline.from_pretrained(
|
||||||
|
args.repo_id_or_model_path,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
).to("cpu")
|
||||||
|
|
||||||
|
# set scheduler
|
||||||
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||||
|
|
||||||
|
# load LCM-LoRA
|
||||||
|
pipe.load_lora_weights(args.lora_weights_path)
|
||||||
|
|
||||||
|
generator = torch.manual_seed(42)
|
||||||
|
image = pipe(
|
||||||
|
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
|
||||||
|
).images[0]
|
||||||
|
image.save(args.save_path)
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
|
||||||
|
help='The huggingface repo id for the stable diffusion model checkpoint')
|
||||||
|
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
|
||||||
|
help='The huggingface repo id for the lcm lora sdxl checkpoint')
|
||||||
|
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-cpu.png",
|
||||||
|
help="Path to save the generated figure")
|
||||||
|
parser.add_argument('--num-steps',type=int,default=4,
|
||||||
|
help="Number of inference steps")
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args)
|
||||||
47
python/llm/example/CPU/StableDiffusion/sdxl.py
Normal file
47
python/llm/example/CPU/StableDiffusion/sdxl.py
Normal file
|
|
@ -0,0 +1,47 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl
|
||||||
|
|
||||||
|
from diffusers import AutoPipelineForText2Image
|
||||||
|
import torch
|
||||||
|
import ipex_llm
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
|
||||||
|
args.repo_id_or_model_path,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
use_safetensors=True
|
||||||
|
).to("cpu")
|
||||||
|
|
||||||
|
image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
|
||||||
|
image.save(args.save_path)
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Stable Diffusion")
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
|
||||||
|
help='The huggingface repo id for the stable diffusion model checkpoint')
|
||||||
|
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--save-path',type=str,default="sdxl-cpu.png",
|
||||||
|
help="Path to save the generated figure")
|
||||||
|
parser.add_argument('--num-steps',type=int,default=20,
|
||||||
|
help="Number of inference steps")
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args)
|
||||||
|
|
@ -14,7 +14,8 @@ This folder contains examples of running IPEX-LLM on Intel GPU:
|
||||||
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
|
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
|
||||||
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
|
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
|
||||||
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs
|
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs
|
||||||
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics
|
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics.
|
||||||
|
- [StableDiffusion](StableDiffusion): running **stable diffusion** with IPEX-LLM on Intel GPUs.
|
||||||
|
|
||||||
|
|
||||||
## System Support
|
## System Support
|
||||||
|
|
|
||||||
119
python/llm/example/GPU/StableDiffusion/README.md
Normal file
119
python/llm/example/GPU/StableDiffusion/README.md
Normal file
|
|
@ -0,0 +1,119 @@
|
||||||
|
# Stable Diffusion
|
||||||
|
In this directory, you will find examples on how to run StableDiffusion models on [Intel GPUs](../README.md).
|
||||||
|
|
||||||
|
### 1. Installation
|
||||||
|
#### 1.1 Install IPEX-LLM
|
||||||
|
Follow the instructions in IPEX-GPU installation guides ([Linux Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), [Windows Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html)) according to your system to install IPEX-LLM. After the installation, you should have created a conda environment, named diffusion for instance.
|
||||||
|
|
||||||
|
#### 1.2 Install dependencies for Stable Diffusion
|
||||||
|
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
|
||||||
|
```bash
|
||||||
|
conda activate diffusion
|
||||||
|
pip install diffusers["torch"] transformers
|
||||||
|
pip install -U PEFT transformers
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables for Linux
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Skip this step if you are running on Windows.
|
||||||
|
|
||||||
|
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Runtime Configurations
|
||||||
|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||||
|
#### 3.1 Configurations for Linux
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Data Center GPU Max Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export ENABLE_SDP_FUSION=1
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export SYCL_CACHE_PERSISTENT=1
|
||||||
|
export BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3.2 Configurations for Windows
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
set BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||||
|
|
||||||
|
### 4. Examples
|
||||||
|
|
||||||
|
#### 4.1 StableDiffusion XL Example
|
||||||
|
The example shows how to run StableDiffusion XL example on Intel GPU.
|
||||||
|
```bash
|
||||||
|
python ./sdxl.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
|
||||||
|
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-gpu.png`.
|
||||||
|
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.
|
||||||
|
|
||||||
|
|
||||||
|
The sample output image looks like below.
|
||||||
|

|
||||||
|
|
||||||
|
#### 4.2 LCM-LoRA Example
|
||||||
|
The example shows how to performing inference with LCM-LoRA on Intel GPU.
|
||||||
|
```bash
|
||||||
|
python ./lora-lcm.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
|
||||||
|
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
|
||||||
|
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-gpu.png`.
|
||||||
|
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.
|
||||||
55
python/llm/example/GPU/StableDiffusion/lora-lcm.py
Normal file
55
python/llm/example/GPU/StableDiffusion/lora-lcm.py
Normal file
|
|
@ -0,0 +1,55 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers import DiffusionPipeline, LCMScheduler
|
||||||
|
import ipex_llm
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
pipe = DiffusionPipeline.from_pretrained(
|
||||||
|
args.repo_id_or_model_path,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
).to("xpu")
|
||||||
|
|
||||||
|
# set scheduler
|
||||||
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||||
|
|
||||||
|
# load LCM-LoRA
|
||||||
|
pipe.load_lora_weights(args.lora_weights_path)
|
||||||
|
|
||||||
|
generator = torch.manual_seed(42)
|
||||||
|
image = pipe(
|
||||||
|
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
|
||||||
|
).images[0]
|
||||||
|
image.save(args.save_path)
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
|
||||||
|
help='The huggingface repo id for the stable diffusion model checkpoint')
|
||||||
|
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
|
||||||
|
help='The huggingface repo id for the lcm lora sdxl checkpoint')
|
||||||
|
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-gpu.png",
|
||||||
|
help="Path to save the generated figure")
|
||||||
|
parser.add_argument('--num-steps',type=int,default=4,
|
||||||
|
help="Number of inference steps")
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args)
|
||||||
47
python/llm/example/GPU/StableDiffusion/sdxl.py
Normal file
47
python/llm/example/GPU/StableDiffusion/sdxl.py
Normal file
|
|
@ -0,0 +1,47 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl
|
||||||
|
|
||||||
|
from diffusers import AutoPipelineForText2Image
|
||||||
|
import torch
|
||||||
|
import ipex_llm
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
|
||||||
|
args.repo_id_or_model_path,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
use_safetensors=True
|
||||||
|
).to("xpu")
|
||||||
|
|
||||||
|
image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
|
||||||
|
image.save(args.save_path)
|
||||||
|
|
||||||
|
if __name__=="__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Stable Diffusion")
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
|
||||||
|
help='The huggingface repo id for the stable diffusion model checkpoint')
|
||||||
|
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--save-path',type=str,default="sdxl-gpu.png",
|
||||||
|
help="Path to save the generated figure")
|
||||||
|
parser.add_argument('--num-steps',type=int,default=20,
|
||||||
|
help="Number of inference steps")
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args)
|
||||||
Loading…
Reference in a new issue