Disable fast fused rope on UHD (#10780)
* use decoding fast path * update * update * cleanup
This commit is contained in:
parent
ea5b373a97
commit
e764f9b1b1
11 changed files with 74 additions and 59 deletions
|
|
@ -41,7 +41,7 @@ from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_x
|
|||
from ipex_llm.transformers.models.utils import mlp_fusion_check, GELU
|
||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36, rotate_half
|
||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5
|
||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
|
||||
import os
|
||||
|
||||
|
|
@ -77,11 +77,6 @@ def should_use_fuse_rope(self, hidden_states, position_ids):
|
|||
return use_fuse_rope
|
||||
|
||||
|
||||
def use_decoding_fast_path(proj, use_fuse_rope, enough_kv_room, bs):
|
||||
return decoding_fast_path_qtype_check(proj) and \
|
||||
use_fuse_rope and enough_kv_room and bs == 1
|
||||
|
||||
|
||||
def gemma_rms_norm_forward(self, hidden_states):
|
||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||
import linear_q4_0
|
||||
|
|
|
|||
|
|
@ -48,6 +48,7 @@ from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
|||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, fp16_fusion_check
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from transformers.models.llama.modeling_llama import LlamaModel
|
||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS, FP4
|
||||
|
|
@ -362,11 +363,12 @@ def llama_attention_forward_4_31_quantized(
|
|||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
|
||||
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
|
||||
and enough_kv_room and bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
|
||||
# single batch decoding fast path
|
||||
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||
|
|
@ -496,11 +498,12 @@ def llama_attention_forward_4_31_original(
|
|||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len)
|
||||
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
|
||||
enough_kv_room and bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
|
||||
# single batch decoding fast path
|
||||
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||
|
|
@ -728,11 +731,12 @@ def llama_attention_selective_batching_forward_4_31(
|
|||
# TODO: decoding fast path
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = past_key_value is not None and is_enough_kv_cache_room_4_31(past_key_value[0])
|
||||
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
|
||||
bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
|
||||
updated_past_key_values = []
|
||||
# single batch decoding fast path
|
||||
|
|
@ -948,11 +952,12 @@ def llama_attention_forward_4_36_quantized(
|
|||
device = hidden_states.device
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope
|
||||
and enough_kv_room and bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
tmp_cache_k, tmp_cache_v = init_kv_cache(
|
||||
|
|
@ -1144,11 +1149,12 @@ def llama_attention_forward_4_36_original(
|
|||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||
qtype_check = llama_decoding_fast_path_qtype_check(self.q_proj)
|
||||
no_tp = not self.config.pretraining_tp > 1
|
||||
decoding_fast_path = (no_tp and qtype_check and use_fuse_rope and
|
||||
enough_kv_room and bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len,
|
||||
llama_decoding_fast_path_qtype_check) and no_tp
|
||||
|
||||
# single batch decoding fast path
|
||||
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||
|
|
|
|||
|
|
@ -53,6 +53,7 @@ from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
|||
is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
from ipex_llm.transformers.models.llama import llama_decoding_fast_path_qtype_check
|
||||
from ipex_llm.transformers.models.llama import should_use_xetla_mm_qkv
|
||||
from ipex_llm.transformers.models.llama import fuse_qkv_weight_xetla
|
||||
|
|
@ -87,12 +88,6 @@ def should_use_fuse_rope(self, hidden_states, position_ids):
|
|||
return use_fuse_rope
|
||||
|
||||
|
||||
def use_decoding_fast_path(proj, use_fuse_rope, enough_kv_room, bs):
|
||||
return llama_decoding_fast_path_qtype_check(proj) and \
|
||||
use_fuse_rope and enough_kv_room and bs == 1 and \
|
||||
not proj.enable_xetla
|
||||
|
||||
|
||||
def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_len, kv_seq_len,
|
||||
num_heads, head_dim, hidden_size, attention_mask):
|
||||
attn_weights = torch.matmul(
|
||||
|
|
|
|||
|
|
@ -53,7 +53,8 @@ from ipex_llm.utils.common import invalidInputError
|
|||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||
apply_rotary_pos_emb_cache_freq_xpu, is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path
|
||||
from ipex_llm.transformers.models.mistral import should_use_fuse_rope
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
|
||||
from ipex_llm.transformers.low_bit_linear import IQ2_XXS
|
||||
|
|
@ -177,9 +178,8 @@ def mixtral_attention_forward(
|
|||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
|
||||
if decoding_fast_path and self.q_proj.qtype != IQ2_XXS:
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ from ipex_llm.utils.common import invalidInputError
|
|||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||
apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36
|
||||
from ipex_llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path
|
||||
from ipex_llm.transformers.models.mistral import should_use_fuse_rope
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention
|
||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
||||
|
||||
|
|
|
|||
|
|
@ -43,7 +43,7 @@ from ipex_llm.transformers.models.utils import rotate_half, SILU
|
|||
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
|
||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_esimd_sdp
|
||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
from ipex_llm.utils.common import invalidInputError, invalidOperationError
|
||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
|
|
@ -142,9 +142,10 @@ def qwen_attention_forward_original(
|
|||
rotary_pos_emb_list = rotary_pos_emb_list[:-1]
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states)
|
||||
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
|
||||
decoding_fast_path = (qtype_check and use_fuse_rope and bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
True,
|
||||
bsz * q_len)
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k, cache_v = layer_past[0], layer_past[1]
|
||||
|
|
|
|||
|
|
@ -57,7 +57,7 @@ from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, apply_rotary_po
|
|||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
|
||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
|
||||
try:
|
||||
from transformers.cache_utils import Cache, DynamicCache
|
||||
|
|
@ -435,9 +435,10 @@ def qwen2_attention_forward_origin(
|
|||
device = hidden_states.device
|
||||
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
|
||||
decoding_fast_path = (qtype_check and use_fuse_rope
|
||||
and enough_kv_room and bsz * q_len == 1)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
|
|
@ -604,9 +605,10 @@ def qwen2_sdpa_attention_forward(
|
|||
device = hidden_states.device
|
||||
|
||||
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx)
|
||||
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
|
||||
decoding_fast_path = (qtype_check and use_fuse_rope
|
||||
and enough_kv_room and bsz * q_len == 1)
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bsz * q_len)
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ from transformers.utils import logging
|
|||
from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
||||
from ipex_llm.transformers.models.utils import rotate_half
|
||||
from ipex_llm.transformers.models.utils import use_esimd_sdp
|
||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
|
||||
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||
|
||||
import os
|
||||
|
||||
|
|
@ -91,9 +91,10 @@ def qwen_attention_forward_vl(
|
|||
device = hidden_states.device
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states)
|
||||
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
|
||||
decoding_fast_path = (qtype_check and use_fuse_rope and bsz * q_len == 1)
|
||||
decoding_fast_path = decoding_fast_path and not self.q_proj.enable_xetla
|
||||
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||
use_fuse_rope,
|
||||
True,
|
||||
bsz * q_len)
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k, cache_v = layer_past[0], layer_past[1]
|
||||
|
|
|
|||
|
|
@ -369,6 +369,27 @@ def mlp_fusion_check(x, qtype, training):
|
|||
return True
|
||||
|
||||
|
||||
def use_decoding_fast_path(proj,
|
||||
use_fuse_rope,
|
||||
enough_kv_room,
|
||||
bs,
|
||||
qtype_check=decoding_fast_path_qtype_check):
|
||||
device = get_xpu_device_type(proj.weight)
|
||||
if not qtype_check(proj):
|
||||
return False
|
||||
if not use_fuse_rope:
|
||||
return False
|
||||
if not enough_kv_room:
|
||||
return False
|
||||
if bs != 1:
|
||||
return False
|
||||
if proj.enable_xetla:
|
||||
return False
|
||||
if device in ["uhd"]:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def use_xmx(x: torch.Tensor, qtype: int):
|
||||
device = get_xpu_device_type(x)
|
||||
return (
|
||||
|
|
|
|||
|
|
@ -35,20 +35,12 @@ from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, a
|
|||
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, SILU
|
||||
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5
|
||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
|
||||
|
||||
import os
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
||||
|
||||
|
||||
def use_decoding_fast_path(proj, use_fuse_rope, enough_kv_room, bs):
|
||||
return decoding_fast_path_qtype_check(proj) and \
|
||||
use_fuse_rope and enough_kv_room and bs == 1 \
|
||||
and not proj.enable_xetla
|
||||
|
||||
|
||||
def should_use_fuse_rope(self, hidden_states, position_ids):
|
||||
use_fuse_rope = hidden_states.device.type == "xpu"
|
||||
use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
|
||||
|
|
|
|||
|
|
@ -180,6 +180,8 @@ def get_xpu_device_type(x):
|
|||
return "flex"
|
||||
elif name.startswith("Intel(R) Data Center GPU Max"):
|
||||
return "pvc"
|
||||
elif name.startswith("Intel(R) UHD"):
|
||||
return "uhd"
|
||||
else:
|
||||
return "others"
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue