Add transformers_int4_npu_pipeline_win in all-in-one benchmark (#12325)
				
					
				
			* add transformers_int4_npu_pipeline_win * bugfix * bugfix: wrong actual_output_len * fix format * bugfix & update `README.md`
This commit is contained in:
		
							parent
							
								
									5ee6f97d6f
								
							
						
					
					
						commit
						e54af44ed6
					
				
					 4 changed files with 83 additions and 5 deletions
				
			
		| 
						 | 
				
			
			@ -27,6 +27,7 @@ Config YAML file has following format
 | 
			
		|||
repo_id:
 | 
			
		||||
  # - 'THUDM/chatglm2-6b'
 | 
			
		||||
  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
			
		||||
  # - 'meta-llama/Meta-Llama-3.1-8B-Instruct'
 | 
			
		||||
  # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now
 | 
			
		||||
local_model_hub: 'path to your local model hub'
 | 
			
		||||
warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api
 | 
			
		||||
| 
						 | 
				
			
			@ -36,6 +37,7 @@ low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
 | 
			
		|||
batch_size: 1 # default to 1
 | 
			
		||||
in_out_pairs:
 | 
			
		||||
  - '32-32'
 | 
			
		||||
  - '960-64'
 | 
			
		||||
  - '1024-128'
 | 
			
		||||
test_api:
 | 
			
		||||
  - "transformer_int4_fp16_gpu"             # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
 | 
			
		||||
| 
						 | 
				
			
			@ -60,10 +62,15 @@ test_api:
 | 
			
		|||
  # - "speculative_cpu"                     # on Intel CPU, inference with self-speculative decoding
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformers_int4_npu_win"           # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
  # - "transformers_int4_loadlowbit_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save_npu.py to save the converted low bit model
 | 
			
		||||
  # - "transformers_int4_npu_pipeline_win"  # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
 | 
			
		||||
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
 | 
			
		||||
npu_group_size: 0 # this can only be either 0 or 128, and only works for `transformers_int4_npu_win` / `transformers_int4_npu_pipeline_win`
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -37,10 +37,11 @@ test_api:
 | 
			
		|||
  # - "deepspeed_transformer_int4_cpu"      # on Intel CPU, deepspeed autotp inference
 | 
			
		||||
  # - "transformers_int4_npu_win"           # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
  # - "transformers_int4_loadlowbit_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save_npu.py to save the converted low bit model
 | 
			
		||||
  # - "transformers_int4_npu_pipeline_win"  # on Intel NPU for Windows,  transformer-like API, (qtype=int4)
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU
 | 
			
		||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
 | 
			
		||||
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
 | 
			
		||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
 | 
			
		||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
 | 
			
		||||
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
 | 
			
		||||
npu_group_size: 128 # This can only be either 0 or 128, and only works for `transformers_int4_npu_win` / `transformers_int4_npu_pipline_win`
 | 
			
		||||
npu_group_size: 0 # this can only be either 0 or 128, and only works for `transformers_int4_npu_win` / `transformers_int4_npu_pipeline_win`
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -191,6 +191,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
 | 
			
		||||
    elif test_api == 'transformers_int4_npu_win':
 | 
			
		||||
        result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache, group_size)
 | 
			
		||||
    elif test_api == 'transformers_int4_npu_pipeline_win':
 | 
			
		||||
        result = transformers_int4_npu_pipeline_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache, group_size)
 | 
			
		||||
    elif test_api == 'transformers_int4_loadlowbit_npu_win':
 | 
			
		||||
        result = run_transformer_int4_loadlowbit_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
 | 
			
		||||
    elif test_api == 'transformers_openvino':
 | 
			
		||||
| 
						 | 
				
			
			@ -215,7 +217,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
                            result[in_out_pair][-1][6] if any(keyword in test_api for keyword in ['int4_gpu', 'int4_fp16_gpu_win', 'int4_loadlowbit_gpu', 'int4_fp16_loadlowbit_gpu', 'fp16_gpu', 'deepspeed_optimize_model_gpu']) and not lookahead else 'N/A',
 | 
			
		||||
                            streaming if 'win' in test_api else 'N/A',
 | 
			
		||||
                            use_fp16_torch_dtype if 'pipeline_parallel_gpu' in test_api else 'N/A',
 | 
			
		||||
                            group_size if 'transformers_int4_npu_win' in test_api else 'N/A'],
 | 
			
		||||
                            group_size if any(keyword in test_api for keyword in ['transformers_int4_npu_win', 'transformers_int4_npu_pipeline_win']) else 'N/A'],
 | 
			
		||||
                            ) 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -680,6 +682,70 @@ def transformers_int4_npu_win(repo_id,
 | 
			
		|||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
def transformers_int4_npu_pipeline_win(repo_id,
 | 
			
		||||
                                       local_model_hub,
 | 
			
		||||
                                       in_out_pairs,
 | 
			
		||||
                                       warm_up,
 | 
			
		||||
                                       num_trials,
 | 
			
		||||
                                       num_beams,
 | 
			
		||||
                                       low_bit,
 | 
			
		||||
                                       batch_size,
 | 
			
		||||
                                       optimize_model,
 | 
			
		||||
                                       transpose_value_cache,
 | 
			
		||||
                                       npu_group_size):
 | 
			
		||||
    from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    in_out_len = in_out_pairs[0].split("-")
 | 
			
		||||
    max_context_len = max(int(in_out_len[0]) + int(in_out_len[1]), 1024)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
 | 
			
		||||
    model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, pipeline=True, torch_dtype=torch.float16,
 | 
			
		||||
                                                 optimize_model=optimize_model, max_context_len=max_context_len, max_prompt_len=int(in_out_len[0]), 
 | 
			
		||||
                                                 quantization_group_size=npu_group_size, transpose_value_cache=transpose_value_cache,
 | 
			
		||||
                                                 use_cache=True, attn_implementation="eager").eval()
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    load_time = end - st
 | 
			
		||||
    print(">> loading of model costs {}s".format(load_time))
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            input_str = get_continuation_input_str(in_len, tokenizer)
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_list = [true_str] * batch_size
 | 
			
		||||
            input_ids = tokenizer(input_list, return_tensors="pt").input_ids
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            actual_in_len = input_ids.shape[1]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                            min_new_tokens=out_len, num_beams=num_beams)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                actual_out_len = output_ids.shape[1] - actual_in_len
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
			
		||||
                                           actual_in_len, actual_out_len, load_time])
 | 
			
		||||
    del model
 | 
			
		||||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
def run_transformer_int4_loadlowbit_npu_win(repo_id,
 | 
			
		||||
                                            local_model_hub,
 | 
			
		||||
                                            in_out_pairs,
 | 
			
		||||
| 
						 | 
				
			
			@ -2186,7 +2252,7 @@ if __name__ == '__main__':
 | 
			
		|||
    streaming = False
 | 
			
		||||
    use_fp16_torch_dtype = False
 | 
			
		||||
    task = 'continuation'
 | 
			
		||||
    optimize_model = False # only for transformers_int4_npu_win
 | 
			
		||||
    optimize_model = False # only for transformers_int4_npu_win, transformers_int4_npu_pipeline_win
 | 
			
		||||
    group_size = 64
 | 
			
		||||
    if 'streaming' in conf:
 | 
			
		||||
        streaming = conf['streaming']
 | 
			
		||||
| 
						 | 
				
			
			@ -2233,7 +2299,7 @@ if __name__ == '__main__':
 | 
			
		|||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
			
		||||
                                            'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
 | 
			
		||||
                                            'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype', 'npu_group_size'])
 | 
			
		||||
        if "pipeline" in api or "deepspeed" in api:
 | 
			
		||||
        if ("pipeline" in api or "deepspeed" in api) and api != 'transformers_int4_npu_pipeline_win':
 | 
			
		||||
            if torch.distributed.get_rank() == 0:
 | 
			
		||||
                df.index += max(line_counter - 1, 0)
 | 
			
		||||
                if line_counter == 0:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -172,6 +172,10 @@ def generate(
 | 
			
		|||
    thread.join()
 | 
			
		||||
    time_end = time.perf_counter()
 | 
			
		||||
 | 
			
		||||
    self.first_cost = (time_t3 - time_start_all - (time_t2 - time_t1))  # seconds
 | 
			
		||||
    self.rest_cost_mean = (time_end - time_t3) / (idx - 1)  # seconds
 | 
			
		||||
    self.encoder_time = 0.0
 | 
			
		||||
 | 
			
		||||
    if do_print:
 | 
			
		||||
        print(f" Start the thread and connect the pipe time: {(time_t2 - time_t1):.2f} s")
 | 
			
		||||
        print(f" Number of input tokens: {input_length}")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue