[LLM] Add basic optimization framework for Yuan2 (#10227)
* Add basic optimization framework for Yuan2 * Small fix * Python style fix * Small fix * Small fix
This commit is contained in:
parent
8ef5482da2
commit
e511bbd8f1
3 changed files with 181 additions and 3 deletions
|
|
@ -820,7 +820,8 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
# falcon-180b and new falcon-40b
|
||||
if version.parse(trans_version) >= version.parse("4.36.0"):
|
||||
# transformers version >= 4.36.0
|
||||
from bigdl.llm.transformers.models.falcon import falcon_attention_forward_4_36
|
||||
from bigdl.llm.transformers.models.falcon import \
|
||||
falcon_attention_forward_4_36
|
||||
convert_forward(model,
|
||||
module.FalconAttention,
|
||||
falcon_attention_forward_4_36
|
||||
|
|
@ -1147,4 +1148,12 @@ def _optimize_post(model, lightweight_bmm=False):
|
|||
module.GPTBigCodeAttention,
|
||||
"_attn",
|
||||
_attn)
|
||||
elif model.config.model_type == 'yuan':
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.yuan import yuan_attention_forward
|
||||
convert_forward(model,
|
||||
module.YuanAttention,
|
||||
yuan_attention_forward
|
||||
)
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -143,7 +143,7 @@ def rotate_every_two(x):
|
|||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
|
||||
"mixtral", "qwen2"]:
|
||||
"mixtral", "qwen2", "yuan"]:
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
|
|
|
|||
169
python/llm/src/bigdl/llm/transformers/models/yuan.py
Normal file
169
python/llm/src/bigdl/llm/transformers/models/yuan.py
Normal file
|
|
@ -0,0 +1,169 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/yuan_hf_model.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/README.md#%E5%A3%B0%E6%98%8E%E4%B8%8E%E5%8D%8F%E8%AE%AEterms-and-conditions
|
||||
#
|
||||
|
||||
import torch
|
||||
import copy
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
def yuan_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
before_hidden_states = None
|
||||
is_first_step = False
|
||||
if use_cache:
|
||||
if past_key_value is None:
|
||||
inference_hidden_states_memory = torch.empty(bsz, 2,
|
||||
hidden_states.shape[2],
|
||||
dtype=hidden_states.dtype)
|
||||
is_first_step = True
|
||||
else:
|
||||
before_hidden_states = past_key_value[2]
|
||||
|
||||
if use_cache:
|
||||
if is_first_step:
|
||||
if q_len >= 2:
|
||||
inference_hidden_states_memory = hidden_states[ :, -2:, :]
|
||||
else:
|
||||
inference_hidden_states_memory[:, :, :] = 0
|
||||
inference_hidden_states_memory[:, -1:, :] = hidden_states[:, -1:, :]
|
||||
else:
|
||||
hidden_states_tmp = before_hidden_states[:, -1:, :]
|
||||
inference_hidden_states_memory = copy.deepcopy(torch.cat((hidden_states_tmp, hidden_states),
|
||||
dim=1))
|
||||
|
||||
value_states = \
|
||||
self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
if self.use_shareqk:
|
||||
qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim)
|
||||
query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
|
||||
query_states, key_states = torch.unbind(query_key, dim=2)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
else:
|
||||
hidden_states = self.lf_gate(hidden_states,before_hidden_states)
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
qk_states = torch.cat([query_states, key_states], dim=-1)
|
||||
qk_states = qk_states.view(bsz,q_len,self.num_heads,int(qk_states.shape[-1]//self.num_heads))
|
||||
(query_states,key_states) = torch.chunk(qk_states, 2, dim=-1)
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states,
|
||||
key_states,
|
||||
cos, sin,
|
||||
position_ids,
|
||||
"yuan")
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states,inference_hidden_states_memory) if use_cache else None
|
||||
|
||||
if self.use_flash_attention:
|
||||
attn_weights = None
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
batch_size, seqlen_q = query_states.shape[0], query_states.shape[1]
|
||||
seqlen_k = key_states.shape[1]
|
||||
|
||||
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
|
||||
|
||||
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int,
|
||||
device=q.device)
|
||||
|
||||
if self.training:
|
||||
invalidInputError(seqlen_k == seqlen_q,
|
||||
"`seqlen_k` should be equal to `seqlen_q`, but is not")
|
||||
cu_seqlens_k = cu_seqlens_q
|
||||
is_causal = self.causal_mask
|
||||
else:
|
||||
is_causal = seqlen_q == seqlen_k
|
||||
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k,
|
||||
step=seqlen_k,
|
||||
dtype=torch.int,
|
||||
device=q.device)
|
||||
self.dropout = 0
|
||||
|
||||
output = flash_attn_unpadded_func(
|
||||
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal
|
||||
)
|
||||
|
||||
attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
||||
else:
|
||||
attn_weights = \
|
||||
torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
|
||||
"Attention weights should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
|
||||
f"but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(attn_weights,
|
||||
torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = \
|
||||
torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||
"`attn_output` should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
|
||||
f"but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights, past_key_value
|
||||
Loading…
Reference in a new issue