Support finishing PP inference once eos_token_id is found (#11336)
				
					
				
			This commit is contained in:
		
							parent
							
								
									de4bb97b4f
								
							
						
					
					
						commit
						e50c890e1f
					
				
					 4 changed files with 65 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -11,6 +11,7 @@ To run this example with IPEX-LLM on Intel GPUs, we have some recommended requir
 | 
			
		|||
- [meta-llama/Meta-Llama-3-8B-Instruct](./run_llama_arc_2_card.sh)
 | 
			
		||||
- [Qwen/Qwen1.5-7B-Chat](./run_qwen1.5_arc_2_card.sh)
 | 
			
		||||
- [Qwen/Qwen1.5-14B-Chat](./run_qwen1.5_arc_2_card.sh)
 | 
			
		||||
- [Qwen/Qwen1.5-32B-Chat](./run_qwen1.5_arc_2_card.sh)
 | 
			
		||||
- [baichuan-inc/Baichuan2-7B-Chat](./run_baichuan2_arc_2_card.sh)
 | 
			
		||||
- [baichuan-inc/Baichuan2-13B-Chat](./run_baichuan2_arc_2_card.sh)
 | 
			
		||||
- [microsoft/Phi-3-mini-4k-instruct](./run_phi3_arc_2_card.sh)
 | 
			
		||||
| 
						 | 
				
			
			@ -57,7 +58,7 @@ bash run_llama_arc_2_card.sh
 | 
			
		|||
<details>
 | 
			
		||||
  <summary> Show Qwen1.5 example </summary>
 | 
			
		||||
 | 
			
		||||
#### Run Qwen1.5-7B-Chat / Qwen1.5-14B-Chat on two Intel Arc A770
 | 
			
		||||
#### Run Qwen1.5-7B-Chat / Qwen1.5-14B-Chat / Qwen1.5-32B-Chat on two Intel Arc A770
 | 
			
		||||
 | 
			
		||||
You could specify `--repo-id-or-model-path` in the test script to be the huggingface repo id for Qwen1.5 to be downloaded, or the path to the huggingface checkpoint folder. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -46,6 +46,7 @@ if __name__ == '__main__':
 | 
			
		|||
                                                 optimize_model=True,
 | 
			
		||||
                                                 trust_remote_code=True,
 | 
			
		||||
                                                 use_cache=True,
 | 
			
		||||
                                                 torch_dtype=torch.float16,
 | 
			
		||||
                                                 pipeline_parallel_stages=args.gpu_num)
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -34,3 +34,7 @@ CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $N
 | 
			
		|||
# # To run Qwen1.5-14B-Chat
 | 
			
		||||
# CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
 | 
			
		||||
#     generate.py --repo-id-or-model-path 'Qwen/Qwen1.5-14B-Chat' --gpu-num $NUM_GPUS
 | 
			
		||||
 | 
			
		||||
# # To run Qwen1.5-32B-Chat
 | 
			
		||||
# CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
 | 
			
		||||
#     generate.py --repo-id-or-model-path 'Qwen/Qwen1.5-32B-Chat' --gpu-num $NUM_GPUS
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -25,6 +25,9 @@ import time
 | 
			
		|||
import numpy as np
 | 
			
		||||
from typing import Callable, List, Optional
 | 
			
		||||
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
import logging
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
# patch GenerationMixin.generate
 | 
			
		||||
from transformers import GenerationMixin
 | 
			
		||||
| 
						 | 
				
			
			@ -118,12 +121,34 @@ def generate(
 | 
			
		|||
    **kwargs,
 | 
			
		||||
):
 | 
			
		||||
    if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
 | 
			
		||||
        # priority: `generation_config` argument > `model.generation_config`
 | 
			
		||||
        if generation_config is None:
 | 
			
		||||
            if (
 | 
			
		||||
                self.generation_config._from_model_config
 | 
			
		||||
                and self.generation_config._original_object_hash == hash(self.generation_config)
 | 
			
		||||
                and self.config._has_non_default_generation_parameters()
 | 
			
		||||
            ):
 | 
			
		||||
                new_generation_config = GenerationConfig.from_model_config(self.config)
 | 
			
		||||
                if new_generation_config != self.generation_config:
 | 
			
		||||
                    self.generation_config = new_generation_config
 | 
			
		||||
            generation_config = self.generation_config
 | 
			
		||||
 | 
			
		||||
        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
 | 
			
		||||
            eos_token_id = generation_config.eos_token_id
 | 
			
		||||
            if isinstance(eos_token_id, list):
 | 
			
		||||
                eos_token_id = eos_token_id[0]
 | 
			
		||||
            logger.warning("Setting `pad_token_id` to `eos_token_id`: "
 | 
			
		||||
                           f"{eos_token_id} for open-end generation.")
 | 
			
		||||
            generation_config.pad_token_id = eos_token_id
 | 
			
		||||
 | 
			
		||||
        if generation_config is not None and generation_config.max_new_tokens is not None:
 | 
			
		||||
            max_new_tokens = generation_config.max_new_tokens
 | 
			
		||||
        else:
 | 
			
		||||
            max_new_tokens = kwargs.get("max_new_tokens", None)
 | 
			
		||||
 | 
			
		||||
        return self.pipeline_parallel_generate(inputs=inputs,
 | 
			
		||||
                                               max_new_tokens=max_new_tokens,)
 | 
			
		||||
                                               max_new_tokens=max_new_tokens,
 | 
			
		||||
                                               generation_config=generation_config,)
 | 
			
		||||
 | 
			
		||||
    return original_generate(self,
 | 
			
		||||
                             inputs=inputs,
 | 
			
		||||
| 
						 | 
				
			
			@ -143,6 +168,7 @@ GenerationMixin.generate = generate
 | 
			
		|||
def pipeline_parallel_generate(self,
 | 
			
		||||
                               inputs: Optional[torch.Tensor] = None,
 | 
			
		||||
                               max_new_tokens: int = 32,
 | 
			
		||||
                               generation_config: Optional[GenerationConfig] = None,
 | 
			
		||||
                               **kwargs):
 | 
			
		||||
    local_rank = dist.get_rank()
 | 
			
		||||
    pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
 | 
			
		||||
| 
						 | 
				
			
			@ -154,12 +180,22 @@ def pipeline_parallel_generate(self,
 | 
			
		|||
    self.first_token_time = 0
 | 
			
		||||
    self.next_token_time = []
 | 
			
		||||
 | 
			
		||||
    pad_token_id = generation_config.pad_token_id
 | 
			
		||||
    eos_token_id = generation_config.eos_token_id
 | 
			
		||||
    if isinstance(eos_token_id, int):
 | 
			
		||||
        eos_token_id = [eos_token_id]
 | 
			
		||||
    eos_token_id_tensor = torch.tensor(eos_token_id).to(inputs.device) \
 | 
			
		||||
        if eos_token_id is not None else None
 | 
			
		||||
 | 
			
		||||
    _input_ids = None
 | 
			
		||||
    _past_key_values = None
 | 
			
		||||
    bs = inputs.shape[0]
 | 
			
		||||
    output_ids = inputs.clone()
 | 
			
		||||
 | 
			
		||||
    step = 0
 | 
			
		||||
    # keep track of which sequences are already finished
 | 
			
		||||
    unfinished_sequences = torch.ones(inputs.shape[0], dtype=torch.long, device=inputs.device)
 | 
			
		||||
    this_peer_finished = False
 | 
			
		||||
    while True:
 | 
			
		||||
        if step >= max_new_tokens:
 | 
			
		||||
            break
 | 
			
		||||
| 
						 | 
				
			
			@ -190,6 +226,14 @@ def pipeline_parallel_generate(self,
 | 
			
		|||
        _input_ids = next_ids
 | 
			
		||||
        output_ids = torch.cat([output_ids, next_ids], dim=-1)
 | 
			
		||||
 | 
			
		||||
        # finished sentences should have their next token be a padding token
 | 
			
		||||
        next_ids = next_ids.squeeze()
 | 
			
		||||
        if eos_token_id is not None:
 | 
			
		||||
            if pad_token_id is None:
 | 
			
		||||
                invalidInputError(False, "If `eos_token_id` is defined, "
 | 
			
		||||
                                         "make sure that `pad_token_id` is defined.")
 | 
			
		||||
            next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
 | 
			
		||||
 | 
			
		||||
        if isinstance(outputs.past_key_values, tuple) and local_rank != 0:
 | 
			
		||||
            value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
 | 
			
		||||
            past_key_values_placeholder = tuple(
 | 
			
		||||
| 
						 | 
				
			
			@ -204,6 +248,19 @@ def pipeline_parallel_generate(self,
 | 
			
		|||
            self.first_token_time = toc - tic
 | 
			
		||||
        else:
 | 
			
		||||
            self.next_token_time.append(toc - tic)
 | 
			
		||||
 | 
			
		||||
        # if eos_token was found in one sentence, set sentence to finished
 | 
			
		||||
        if eos_token_id_tensor is not None:
 | 
			
		||||
            unfinished_sequences = unfinished_sequences.mul(
 | 
			
		||||
                next_ids.tile(eos_token_id_tensor.shape[0], 1)
 | 
			
		||||
                .ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
 | 
			
		||||
            )
 | 
			
		||||
            # stop when each sentence is finished
 | 
			
		||||
            if unfinished_sequences.max() == 0:
 | 
			
		||||
                this_peer_finished = True
 | 
			
		||||
        if this_peer_finished:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        step += 1
 | 
			
		||||
        if self.device.type == 'xpu':
 | 
			
		||||
            torch.xpu.synchronize()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue