LLM: change fp16 benchmark to model.half (#10477)
* LLM: change fp16 benchmark to model.half * fix
This commit is contained in:
parent
749bedaf1e
commit
e41d556436
1 changed files with 8 additions and 4 deletions
|
|
@ -930,27 +930,31 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
|
||||||
# which convert the relevant layers in the model into INT4 format
|
# which convert the relevant layers in the model into INT4 format
|
||||||
st = time.perf_counter()
|
st = time.perf_counter()
|
||||||
if repo_id in CHATGLM_IDS:
|
if repo_id in CHATGLM_IDS:
|
||||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, torch_dtype=torch.float16,
|
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
model = model.half()
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
elif repo_id in LLAMA_IDS:
|
elif repo_id in LLAMA_IDS:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, torch_dtype=torch.float16,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
model = model.half()
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
elif repo_id in LLAVA_IDS:
|
elif repo_id in LLAVA_IDS:
|
||||||
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
|
||||||
sys.path.append(rf"{llava_repo_dir}")
|
sys.path.append(rf"{llava_repo_dir}")
|
||||||
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, torch_dtype=torch.float16,
|
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
|
||||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
model = model.half()
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, torch_dtype=torch.float16,
|
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
|
||||||
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
model = model.half()
|
||||||
model = model.to('xpu')
|
model = model.to('xpu')
|
||||||
if isinstance(model, GPTJForCausalLM):
|
if isinstance(model, GPTJForCausalLM):
|
||||||
# For gpt-j model family, this optimization can provide a better performance.
|
# For gpt-j model family, this optimization can provide a better performance.
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue