[NPU] Groupwise (#12241)
* dq divide * fix * support attn divide * update qwen2 7b * divide down_proj & other linear * use concat & reduce sum * support scale after * support qwen2 * w/ mm * update reshape * spda * split * split 2+ * update * lm head-> 28 * no scale * update * update * update * fix style * fix style * to split linear * update * update code * address comments * fix style & remove redundant code & revert benchmark scripts * fix style & remove code * update save & load --------- Co-authored-by: Yang Wang <yang3.wang@intel.com>
This commit is contained in:
parent
aedc4edfba
commit
e37f951cce
9 changed files with 493 additions and 165 deletions
|
|
@ -30,7 +30,9 @@ current_dir = os.path.dirname(os.path.realpath(__file__))
|
|||
def save_npu_model_in_low_bit(repo_id,
|
||||
local_model_hub,
|
||||
low_bit,
|
||||
max_output_len, max_prompt_len, intra_pp, inter_pp, disable_transpose_value_cache):
|
||||
max_output_len, max_prompt_len, intra_pp, inter_pp,
|
||||
disable_transpose_value_cache,
|
||||
quantization_group_size):
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
@ -47,6 +49,7 @@ def save_npu_model_in_low_bit(repo_id,
|
|||
intra_pp=intra_pp,
|
||||
inter_pp=inter_pp,
|
||||
transpose_value_cache=not disable_transpose_value_cache,
|
||||
quantization_group_size=quantization_group_size
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
|
|
@ -54,6 +57,7 @@ def save_npu_model_in_low_bit(repo_id,
|
|||
|
||||
model.save_low_bit(model_path+'-npu-'+low_bit)
|
||||
tokenizer.save_pretrained(model_path+'-npu-'+low_bit)
|
||||
print(f"Model saved to {model_path+'-npu-'+low_bit}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
@ -65,6 +69,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
||||
parser.add_argument("--intra-pp", type=int, default=2)
|
||||
parser.add_argument("--inter-pp", type=int, default=2)
|
||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
||||
|
||||
args = parser.parse_args()
|
||||
from omegaconf import OmegaConf
|
||||
|
|
@ -78,5 +83,6 @@ if __name__ == "__main__":
|
|||
max_prompt_len=args.max_prompt_len,
|
||||
intra_pp=args.intra_pp,
|
||||
inter_pp=args.inter_pp,
|
||||
disable_transpose_value_cache=args.disable_transpose_value_cache
|
||||
disable_transpose_value_cache=args.disable_transpose_value_cache,
|
||||
quantization_group_size=args.quantization_group_size,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -81,6 +81,8 @@ class _BaseAutoModelClass:
|
|||
:param mixed_precision: boolean value, Whether to use mixed precision quantization.
|
||||
Default to be False. If set to ``True``, we will use ``'sym_int8'`` for lm_head when
|
||||
``load_in_low_bit`` is '``sym_int4``' for certain models.
|
||||
:param quantization_group_size: int, quantization group size, The recommended
|
||||
quantization_group_size are 0, 32, 64 or 128
|
||||
:return: a model instance
|
||||
"""
|
||||
if kwargs.get("device_map", None) not in [None, "cpu", "auto"]:
|
||||
|
|
@ -126,6 +128,15 @@ class _BaseAutoModelClass:
|
|||
transpose_value_cache = kwargs.pop("transpose_value_cache", True)
|
||||
modules_to_not_convert = kwargs.pop("modules_to_not_convert", [])
|
||||
mixed_precision = kwargs.pop('mixed_precision', False)
|
||||
quantization_group_size = kwargs.pop("quantization_group_size", 0)
|
||||
|
||||
invalidInputError(
|
||||
quantization_group_size in [0, 32, 64, 128],
|
||||
(
|
||||
"The recommended quantization_group_size are 0, 32, 64 or 128,"
|
||||
f"but got {quantization_group_size}"
|
||||
)
|
||||
)
|
||||
|
||||
_args = copy.deepcopy(args)
|
||||
_kwargs = copy.deepcopy(kwargs)
|
||||
|
|
@ -162,8 +173,11 @@ class _BaseAutoModelClass:
|
|||
|
||||
with torch.no_grad():
|
||||
model.config.update({"mixed_precision": mixed_precision})
|
||||
optimize_llm_pre(model, qtype, mixed_precision)
|
||||
cls.load_convert(qtype, model, "cpu", modules_to_not_convert, *args, **kwargs)
|
||||
model.config.update({"group_size": quantization_group_size})
|
||||
optimize_llm_pre(model, qtype, mixed_precision,
|
||||
quantization_group_size=quantization_group_size)
|
||||
cls.load_convert(qtype, model, "cpu", modules_to_not_convert,
|
||||
quantization_group_size, *args, **kwargs)
|
||||
create_npu_kernels(llm)
|
||||
model = model.eval()
|
||||
logger.info(f"Finish to convert model")
|
||||
|
|
@ -177,6 +191,7 @@ class _BaseAutoModelClass:
|
|||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=quantization_group_size
|
||||
)
|
||||
model.save_low_bit = types.MethodType(save_low_bit, model)
|
||||
else:
|
||||
|
|
@ -197,11 +212,13 @@ class _BaseAutoModelClass:
|
|||
return model
|
||||
|
||||
@classmethod
|
||||
def load_convert(cls, q_k, optimize_model, device, modules_to_not_convert, *arg, **kwarg):
|
||||
def load_convert(cls, q_k, optimize_model, device, modules_to_not_convert,
|
||||
group_size=0, *arg, **kwarg):
|
||||
from ipex_llm.transformers.npu_models.convert import replace_with_QuantizedLinear
|
||||
|
||||
replace_with_QuantizedLinear(optimize_model, q_k, device=device,
|
||||
modules_to_not_convert=modules_to_not_convert)
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
group_size=group_size)
|
||||
|
||||
@classmethod
|
||||
@patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
|
||||
|
|
@ -214,6 +231,7 @@ class _BaseAutoModelClass:
|
|||
ignore_argument(kwargs, "speculative")
|
||||
ignore_argument(kwargs, "pipeline_parallel_stages")
|
||||
ignore_argument(kwargs, "mixed_precision")
|
||||
ignore_argument(kwargs, "quantization_group_size")
|
||||
optimize_model = kwargs.pop("optimize_model", False)
|
||||
max_output_len = kwargs.pop("max_output_len", 1024)
|
||||
max_prompt_len = kwargs.pop("max_prompt_len", 512)
|
||||
|
|
@ -264,6 +282,7 @@ class _BaseAutoModelClass:
|
|||
qtype = config_dict.pop("bigdl_transformers_low_bit", False)
|
||||
bigdl_lcmu_enabled = config_dict.pop("bigdl_lcmu_enabled", True)
|
||||
mixed_precision = config_dict.pop("mixed_precision", False)
|
||||
quantization_group_size = config_dict.pop("group_size", 0)
|
||||
|
||||
invalidInputError(
|
||||
qtype,
|
||||
|
|
@ -376,9 +395,10 @@ class _BaseAutoModelClass:
|
|||
llm = model
|
||||
|
||||
with torch.no_grad():
|
||||
optimize_llm_pre(model, qtype, mixed_precision)
|
||||
optimize_llm_pre(model, qtype, mixed_precision,
|
||||
quantization_group_size=quantization_group_size)
|
||||
cls.load_convert(qtype, model, quant_device, modules_to_not_convert,
|
||||
*model_args, **kwargs)
|
||||
quantization_group_size, *model_args, **kwargs)
|
||||
create_npu_kernels(llm)
|
||||
|
||||
else:
|
||||
|
|
@ -458,6 +478,7 @@ class _BaseAutoModelClass:
|
|||
inter_pp=inter_pp,
|
||||
intra_pp=intra_pp,
|
||||
transpose_value_cache=transpose_value_cache,
|
||||
group_size=quantization_group_size
|
||||
)
|
||||
|
||||
return model
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
import torch
|
||||
from typing import List
|
||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||
|
||||
|
||||
def merge_linear(linears: List[torch.nn.Linear]) -> torch.nn.Linear:
|
||||
|
|
@ -40,3 +41,21 @@ def reshape_lm_head_input(x):
|
|||
shape[1] = 1
|
||||
x = x[:, -1, :].view(shape)
|
||||
return x
|
||||
|
||||
|
||||
def split_linear(module, module_name, n_splits=2):
|
||||
in_features = module.in_features
|
||||
invalidInputError(in_features % n_splits == 0,
|
||||
f"in_features of the linear layer {module_name} must be divisible by"
|
||||
f" n_splits, but got in_features: {in_features}, n_splits: {n_splits}")
|
||||
weight_split = torch.tensor_split(module.weight, n_splits, dim=1)
|
||||
linear_list = torch.nn.ModuleList()
|
||||
bias = module.bias
|
||||
for idx, weight in enumerate(weight_split):
|
||||
new_linear = torch.nn.Linear(weight.size(1),
|
||||
weight.size(0),
|
||||
bias=False if bias is None else True)
|
||||
new_linear.bias = bias
|
||||
new_linear.weight = torch.nn.Parameter(weight.contiguous(), requires_grad=False)
|
||||
linear_list.add_module(f"{module_name}_dq_{idx}", new_linear)
|
||||
return linear_list
|
||||
|
|
|
|||
|
|
@ -31,7 +31,8 @@ def module_optimization(func) -> torch.nn.Module:
|
|||
torch.nn.Module: optimized module
|
||||
"""
|
||||
|
||||
def wrapper(model: torch.nn.Module, qtype, device, modules_to_not_convert, *args, **kwargs):
|
||||
def wrapper(model: torch.nn.Module, qtype, device, modules_to_not_convert,
|
||||
group_size=0, *args, **kwargs):
|
||||
"""Recursively apply the optimization function.
|
||||
|
||||
Args:
|
||||
|
|
@ -42,18 +43,22 @@ def module_optimization(func) -> torch.nn.Module:
|
|||
"""
|
||||
for name, layer in model.named_children():
|
||||
if name not in modules_to_not_convert:
|
||||
new_layer = func(layer, qtype, device, modules_to_not_convert, *args, **kwargs)
|
||||
new_layer = func(layer, qtype, device, modules_to_not_convert,
|
||||
group_size=group_size, *args, **kwargs)
|
||||
if new_layer:
|
||||
model.add_module(name, new_layer)
|
||||
wrapper(new_layer, qtype, device, modules_to_not_convert, *args, **kwargs)
|
||||
wrapper(new_layer, qtype, device, modules_to_not_convert,
|
||||
group_size=group_size, *args, **kwargs)
|
||||
else:
|
||||
wrapper(layer, qtype, device, modules_to_not_convert, *args, **kwargs)
|
||||
wrapper(layer, qtype, device, modules_to_not_convert,
|
||||
group_size=group_size, *args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@module_optimization
|
||||
def replace_with_QuantizedLinear(layer, qtype, device, modules_to_not_convert):
|
||||
def replace_with_QuantizedLinear(layer, qtype, device, modules_to_not_convert,
|
||||
group_size):
|
||||
from ipex_llm.transformers.low_bit_linear import ggml_convert_qtype
|
||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
||||
iqtype = ggml_tensor_qtype[qtype]
|
||||
|
|
@ -66,7 +71,8 @@ def replace_with_QuantizedLinear(layer, qtype, device, modules_to_not_convert):
|
|||
iqtype = ggml_tensor_qtype[qtype]
|
||||
qweights, scale = ggml_convert_qtype(layer.weight.data.to(torch.float32),
|
||||
iqtype, device=device)
|
||||
return QuantizedLinear(qweights, scale, layer.bias)
|
||||
return QuantizedLinear(qweights, scale, layer.bias,
|
||||
group_size=group_size)
|
||||
|
||||
|
||||
def convert_forward(m, target_m, new_forward):
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ import importlib
|
|||
import numpy as np
|
||||
from ipex_llm.transformers.low_bit_linear import LowBitLinear, FP4Params
|
||||
from ipex_llm.transformers.npu_models.lm_head import LMHeadLinear, SlicedLMHead
|
||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||
|
||||
|
||||
def convert_forward(m, target_m, new_forward):
|
||||
|
|
@ -29,7 +30,8 @@ def convert_forward(m, target_m, new_forward):
|
|||
convert_forward(sub_m, target_m, new_forward)
|
||||
|
||||
|
||||
def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision):
|
||||
def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
|
||||
quantization_group_size=0):
|
||||
if model.config.model_type == "baichuan":
|
||||
# process NormHead module in Baichuan2 7B
|
||||
if hasattr(model, 'lm_head') and model.lm_head is not None:
|
||||
|
|
@ -86,17 +88,40 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision):
|
|||
model = model.llm
|
||||
|
||||
if model.config.model_type == "qwen2":
|
||||
from ipex_llm.transformers.npu_models.qwen2_mp import split_mlp_down_proj
|
||||
model.apply(split_mlp_down_proj)
|
||||
from ipex_llm.transformers.npu_models.qwen2_mp import split_linears
|
||||
|
||||
if quantization_group_size == 0:
|
||||
n_splits_linear = 1
|
||||
n_splits_down_proj = 2 if model.config.intermediate_size == 18944 else 1
|
||||
else:
|
||||
invalidInputError(
|
||||
model.config.hidden_size % quantization_group_size == 0 and
|
||||
model.config.intermediate_size % quantization_group_size == 0,
|
||||
"The model hidden_size and intermediate_size should be divisible by "
|
||||
f"quantization_group_size, but got hidden_size: {model.config.hidden_size}, "
|
||||
f"intermediate_size: {model.config.intermediate_size}, and "
|
||||
f"quantization_group_size: {quantization_group_size}"
|
||||
)
|
||||
n_splits_linear = model.config.hidden_size // quantization_group_size
|
||||
n_splits_down_proj = model.config.intermediate_size // quantization_group_size
|
||||
|
||||
model.apply(lambda m: split_linears(m, n_splits_hidden_size=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj))
|
||||
|
||||
# for Qwen2-7B-Insturct, divide lm_head into 14 parts
|
||||
if model.config.hidden_size == 3584 and model.config.vocab_size == 152064 and \
|
||||
not cpu_lm_head:
|
||||
# Do not split lm_head and use sym_int8 instead when mixed_precison is True
|
||||
if quantization_group_size != 0:
|
||||
split_num = model.config.hidden_size // quantization_group_size
|
||||
new_lm_head = SlicedLMHead(model.lm_head.weight, split_num=split_num,
|
||||
bias=model.lm_head.bias, use_split=True)
|
||||
else:
|
||||
# Do not split lm_head and use sym_int8 instead when mixed_precison is True
|
||||
is_split = (not mixed_precision) and qtype == "sym_int4_rtn"
|
||||
split_num = 14 if is_split else 1
|
||||
new_lm_head = SlicedLMHead(model.lm_head.weight, split_num=split_num,
|
||||
bias=model.lm_head.bias)
|
||||
bias=model.lm_head.bias, use_split=False)
|
||||
del model.lm_head
|
||||
model.lm_head = new_lm_head
|
||||
|
||||
|
|
@ -132,6 +157,7 @@ def optimize_llm(
|
|||
inter_pp=None,
|
||||
intra_pp=None,
|
||||
transpose_value_cache=True,
|
||||
group_size=0
|
||||
):
|
||||
if model.config.model_type == "llama":
|
||||
if intra_pp is None:
|
||||
|
|
@ -168,7 +194,13 @@ def optimize_llm(
|
|||
if intra_pp is None:
|
||||
intra_pp = 2
|
||||
if inter_pp is None:
|
||||
inter_pp = 2 if model.config.intermediate_size == 18944 else 1
|
||||
if model.config.intermediate_size == 18944:
|
||||
if group_size != 0:
|
||||
inter_pp = 5
|
||||
else:
|
||||
inter_pp = 2
|
||||
else:
|
||||
inter_pp = 1
|
||||
|
||||
from ipex_llm.transformers.npu_models.qwen2_mp import gen_qwen2_fused_model_forward
|
||||
from ipex_llm.transformers.npu_models.qwen2_mp import DecodeRunner, PrefillRunner
|
||||
|
|
|
|||
|
|
@ -130,6 +130,7 @@ class QuantizedLinear(torch.nn.Module):
|
|||
weight: torch.Tensor,
|
||||
scale: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None,
|
||||
group_size: int = False,
|
||||
):
|
||||
"""Initialize the QuantizedLinear class.
|
||||
|
||||
|
|
@ -154,8 +155,11 @@ class QuantizedLinear(torch.nn.Module):
|
|||
)
|
||||
)
|
||||
self.outC, self.inC = self.weight.shape
|
||||
if group_size != 0:
|
||||
self.scale = Parameter(scale, requires_grad=False)
|
||||
else:
|
||||
if self.weight.dtype == torch.uint8:
|
||||
# In case is Int4 we need to double the input channels because weights are compressed
|
||||
# Int4 we need to double the input channels because weights are compressed
|
||||
self.inC *= 2
|
||||
self.scale = Parameter(scale * math.sqrt(self.inC), requires_grad=False)
|
||||
self.bias = bias
|
||||
|
|
|
|||
|
|
@ -13,10 +13,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
from filelock import FileLock
|
||||
from intel_npu_acceleration_library.backend import NNFactory
|
||||
from intel_npu_acceleration_library.backend.bindings import lib as backend_lib
|
||||
|
||||
|
|
@ -34,6 +34,7 @@ class LMHeadLinear(NNFactory):
|
|||
profile: bool = False,
|
||||
device: str = "NPU",
|
||||
dtype: np.dtype = np.int8,
|
||||
use_split: bool = False,
|
||||
):
|
||||
"""Initialize the LMHeadLinear class.
|
||||
|
||||
|
|
@ -51,9 +52,14 @@ class LMHeadLinear(NNFactory):
|
|||
self.inC, self.outC = inC, outC
|
||||
self.batch = batch
|
||||
|
||||
input = self.parameter((self.batch, self.inC))
|
||||
|
||||
self.split_num = split_num
|
||||
|
||||
if use_split:
|
||||
input = self.parameter((1, self.batch, self.inC))
|
||||
res = self.dq_split_linear(input, self.split_num, self.outC, self.inC, wt_dtype=dtype,
|
||||
scale_factor=False)
|
||||
else:
|
||||
input = self.parameter((self.batch, self.inC))
|
||||
split_size = self.inC // split_num // 2 * 2
|
||||
|
||||
for i in range(self.split_num):
|
||||
|
|
@ -61,7 +67,8 @@ class LMHeadLinear(NNFactory):
|
|||
end_idx = (i + 1) * split_size if i < self.split_num - 1 else self.inC
|
||||
input_slice = self.slice(input, begin=[0, start_idx],
|
||||
end=[self.batch, end_idx])
|
||||
linear_slice = self.linear(input_slice, outC, split_size, bias=False, wt_dtype=dtype)
|
||||
linear_slice = self.linear(input_slice, outC, split_size, bias=False,
|
||||
wt_dtype=dtype)
|
||||
if i == 0:
|
||||
res = linear_slice
|
||||
else:
|
||||
|
|
@ -71,6 +78,14 @@ class LMHeadLinear(NNFactory):
|
|||
self.compile()
|
||||
print("end compiling lm_head")
|
||||
|
||||
def set_weights(self, op_id, weights):
|
||||
self.set_weights_async(op_id, weights)
|
||||
with FileLock(f"lmhead_run.lock"):
|
||||
backend_lib.run(self._mm)
|
||||
|
||||
def set_weights_async(self, op_id, weights):
|
||||
self.setWeights(1, op_id, *weights)
|
||||
|
||||
def run(
|
||||
self, X: np.ndarray
|
||||
) -> np.ndarray:
|
||||
|
|
@ -93,7 +108,7 @@ class LMHeadLinear(NNFactory):
|
|||
|
||||
|
||||
class SlicedLMHead(nn.Module):
|
||||
def __init__(self, weight, bias, split_num):
|
||||
def __init__(self, weight, bias, split_num, use_split=False):
|
||||
super().__init__()
|
||||
self.split_num = split_num
|
||||
self.outC, self.inC = weight.shape
|
||||
|
|
@ -110,6 +125,7 @@ class SlicedLMHead(nn.Module):
|
|||
new_linear.out_features = new_weight.size(0)
|
||||
self.lm_heads.append(new_linear)
|
||||
self.bias = bias
|
||||
self.use_split = use_split
|
||||
|
||||
def forward(self, hidden_states):
|
||||
if hidden_states.size(0) * hidden_states.size(1) == 1:
|
||||
|
|
@ -143,9 +159,19 @@ class SlicedLMHead(nn.Module):
|
|||
def get_fused_lm_head(self):
|
||||
np_dtype = np.uint8 if self.get_weight_dtype() == torch.uint8 else np.int8
|
||||
self.fused_lm_head = LMHeadLinear(self.inC, self.outC, 1, self.split_num,
|
||||
False, "NPU", dtype=np_dtype)
|
||||
False, "NPU", dtype=np_dtype, use_split=self.use_split)
|
||||
if self.use_split:
|
||||
weights = []
|
||||
scales = []
|
||||
for i in range(self.split_num):
|
||||
weights.append(self.lm_heads[i].weight)
|
||||
scales.append(self.lm_heads[i].scale)
|
||||
fused_lm_head_weights = (torch.stack(weights, axis=0).numpy(),
|
||||
torch.stack(scales, axis=0).numpy())
|
||||
else:
|
||||
fused_lm_head_weights = [(self.lm_heads[i].weight.data.numpy(),
|
||||
self.lm_heads[i].scale.data.numpy())
|
||||
for i in range(self.split_num)]
|
||||
self.fused_lm_head.setWeights(1, self.lm_heads[0].op_id,
|
||||
*fused_lm_head_weights)
|
||||
|
||||
self.fused_lm_head.set_weights(self.lm_heads[0].op_id,
|
||||
fused_lm_head_weights)
|
||||
|
|
|
|||
|
|
@ -27,6 +27,8 @@ from filelock import FileLock
|
|||
import ctypes
|
||||
import math
|
||||
import numpy as np
|
||||
from typing import Optional, Any, List
|
||||
import numpy.typing as npt
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
|
@ -60,6 +62,12 @@ def run_model(
|
|||
op_args.append((set_contiguous(w[0]).numpy(), set_contiguous(w[1]).numpy()))
|
||||
op_args_flatten.append(op_args[-1][0])
|
||||
op_args_flatten.append(op_args[-1][1])
|
||||
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
|
||||
op_args.append(w.numpy())
|
||||
op_args_flatten.append(op_args[-1])
|
||||
elif isinstance(w, np.ndarray): # scale
|
||||
op_args.append(w)
|
||||
op_args_flatten.append(op_args[-1])
|
||||
else:
|
||||
op_args.append(set_contiguous(w).to(torch.float16).numpy())
|
||||
op_args_flatten.append(op_args[-1])
|
||||
|
|
@ -94,7 +102,8 @@ def run_model(
|
|||
|
||||
class LLMBaseNNFactory(NNFactory):
|
||||
|
||||
def __init__(self, max_seq_len, transpose_value, dtype, profile=False, device="NPU"):
|
||||
def __init__(self, max_seq_len, transpose_value, dtype, profile=False, device="NPU",
|
||||
n_splits_linear=1, n_splits_down_proj=1, group_size=False):
|
||||
super().__init__(profile, device)
|
||||
self.cache_parameter_ops = []
|
||||
self.input_ops = []
|
||||
|
|
@ -104,6 +113,9 @@ class LLMBaseNNFactory(NNFactory):
|
|||
self.max_seq_len = max_seq_len
|
||||
self.transpose_value = transpose_value
|
||||
self.dtype = dtype
|
||||
self.n_splits_linear = n_splits_linear
|
||||
self.n_splits_down_proj = n_splits_down_proj
|
||||
self.group_size = group_size
|
||||
|
||||
def attention(self,
|
||||
*,
|
||||
|
|
@ -124,6 +136,8 @@ class LLMBaseNNFactory(NNFactory):
|
|||
v_bias=None):
|
||||
hidden_size = num_heads * head_dim
|
||||
num_key_value_groups = num_heads // num_key_value_heads
|
||||
groupsize = hidden_size // self.n_splits_linear
|
||||
if self.n_splits_linear == 1:
|
||||
query_states = self.linear(
|
||||
hidden_states,
|
||||
num_heads * head_dim,
|
||||
|
|
@ -131,8 +145,7 @@ class LLMBaseNNFactory(NNFactory):
|
|||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
if q_bias is not None:
|
||||
query_states = query_states + q_bias
|
||||
|
||||
key_states = self.linear(
|
||||
hidden_states,
|
||||
num_key_value_heads * head_dim,
|
||||
|
|
@ -140,8 +153,7 @@ class LLMBaseNNFactory(NNFactory):
|
|||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
if k_bias is not None:
|
||||
key_states = key_states + k_bias
|
||||
|
||||
value_states = self.linear(
|
||||
hidden_states,
|
||||
num_key_value_heads * head_dim,
|
||||
|
|
@ -149,6 +161,67 @@ class LLMBaseNNFactory(NNFactory):
|
|||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
)
|
||||
else:
|
||||
hidden_states = self.unsqueeze(hidden_states, axis=0)
|
||||
if mode == "prefill":
|
||||
query_states_to_concat = []
|
||||
key_states_to_concat = []
|
||||
value_states_to_concat = []
|
||||
for i in range(self.n_splits_linear):
|
||||
sub_hidden_states = self.slice(hidden_states,
|
||||
begin=[0, 0, i * groupsize],
|
||||
end=[1, seq_len, (i + 1) * groupsize])
|
||||
query_states_to_concat.append(
|
||||
self.linear(
|
||||
sub_hidden_states,
|
||||
num_heads * head_dim,
|
||||
groupsize,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
key_states_to_concat.append(
|
||||
self.linear(
|
||||
sub_hidden_states,
|
||||
num_key_value_heads * head_dim,
|
||||
groupsize,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
value_states_to_concat.append(
|
||||
self.linear(
|
||||
sub_hidden_states,
|
||||
num_key_value_heads * head_dim,
|
||||
groupsize,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
query_states = sum(query_states_to_concat)
|
||||
key_states = sum(key_states_to_concat)
|
||||
value_states = sum(value_states_to_concat)
|
||||
else:
|
||||
query_states = self.dq_split_linear(hidden_states, num_heads * head_dim,
|
||||
hidden_size, self.n_splits_linear,
|
||||
wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
key_states = self.dq_split_linear(hidden_states, num_key_value_heads * head_dim,
|
||||
hidden_size, self.n_splits_linear,
|
||||
wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
value_states = self.dq_split_linear(hidden_states, num_key_value_heads * head_dim,
|
||||
hidden_size, self.n_splits_linear,
|
||||
wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
|
||||
if q_bias is not None:
|
||||
query_states = query_states + q_bias
|
||||
if k_bias is not None:
|
||||
key_states = key_states + k_bias
|
||||
if v_bias is not None:
|
||||
value_states = value_states + v_bias
|
||||
|
||||
|
|
@ -215,23 +288,100 @@ class LLMBaseNNFactory(NNFactory):
|
|||
attn_output = self.transpose(attn_output, [0, 2, 1, 3])
|
||||
attn_output = self.reshape(attn_output, [1, seq_len, hidden_size])
|
||||
|
||||
if self.n_splits_linear == 1:
|
||||
attn_output = self.linear(
|
||||
attn_output, hidden_size, hidden_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
else:
|
||||
if mode == "prefill":
|
||||
attn_output_to_concat = []
|
||||
for i in range(self.n_splits_linear):
|
||||
sub_attn_output = self.slice(attn_output,
|
||||
begin=[0, 0, i * groupsize],
|
||||
end=[1, seq_len, (i + 1) * groupsize])
|
||||
attn_output_to_concat.append(
|
||||
self.linear(
|
||||
sub_attn_output, hidden_size, groupsize, bias=False,
|
||||
wt_dtype=self.dtype, scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
attn_output = sum(attn_output_to_concat)
|
||||
else:
|
||||
attn_output = self.dq_split_linear(attn_output, hidden_size, hidden_size,
|
||||
self.n_splits_linear, wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
|
||||
return attn_output, new_key_states, new_value_states
|
||||
|
||||
def mlp(self, hidden_states):
|
||||
def mlp(self, hidden_states, seq_len=-1, mode="prefill"):
|
||||
if self.n_splits_linear == 1:
|
||||
mm1 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False,
|
||||
wt_dtype=self.dtype
|
||||
)
|
||||
mm2 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False,
|
||||
wt_dtype=self.dtype
|
||||
) # type: ignore[attr-defined]
|
||||
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
||||
else:
|
||||
invalidInputError(seq_len > 0, "seq_len should be provided if use split linear")
|
||||
if mode == "prefill":
|
||||
gate_up_groupsize = self.hidden_size // self.n_splits_linear
|
||||
mm1_to_concat = []
|
||||
mm2_to_concat = []
|
||||
for i in range(self.n_splits_linear):
|
||||
sub_hidden_states = self.slice(hidden_states,
|
||||
begin=[0, 0, i * gate_up_groupsize],
|
||||
end=[1, seq_len, (i + 1) * gate_up_groupsize])
|
||||
mm1_to_concat.append(
|
||||
self.linear(
|
||||
sub_hidden_states, self.intermediate_size, gate_up_groupsize,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype, scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
mm2_to_concat.append(
|
||||
self.linear(
|
||||
sub_hidden_states, self.intermediate_size, gate_up_groupsize,
|
||||
bias=False,
|
||||
wt_dtype=self.dtype, scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
mm1 = sum(mm1_to_concat)
|
||||
mm2 = sum(mm2_to_concat)
|
||||
else:
|
||||
mm1 = self.dq_split_linear(hidden_states, self.intermediate_size, self.hidden_size,
|
||||
self.n_splits_linear, wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
mm2 = self.dq_split_linear(hidden_states, self.intermediate_size, self.hidden_size,
|
||||
self.n_splits_linear, wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
||||
|
||||
if self.n_splits_down_proj == 1:
|
||||
hidden_states = self.linear(
|
||||
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
else:
|
||||
invalidInputError(seq_len > 0, "seq_len should be provided if use split linear")
|
||||
if mode == "prefill":
|
||||
down_groupsize = self.intermediate_size // self.n_splits_down_proj
|
||||
hidden_states_to_concat = []
|
||||
for i in range(self.n_splits_down_proj):
|
||||
sub_mm1 = self.slice(mm1, begin=[0, 0, i * down_groupsize],
|
||||
end=[1, seq_len, (i + 1) * down_groupsize])
|
||||
hidden_states_to_concat.append(
|
||||
self.linear(
|
||||
sub_mm1, self.hidden_size, down_groupsize, bias=False,
|
||||
wt_dtype=self.dtype, scale_factor=(self.group_size == 0)
|
||||
)
|
||||
)
|
||||
hidden_states = sum(hidden_states_to_concat)
|
||||
else:
|
||||
hidden_states = self.dq_split_linear(mm1, self.hidden_size, self.intermediate_size,
|
||||
self.n_splits_down_proj, wt_dtype=self.dtype,
|
||||
scale_factor=(self.group_size == 0))
|
||||
return hidden_states
|
||||
|
||||
def layer_norm(self, hidden_states, layernorm_weight):
|
||||
|
|
@ -341,6 +491,19 @@ class LLMBaseNNFactory(NNFactory):
|
|||
self.linear_ops.append(op)
|
||||
return op
|
||||
|
||||
def dq_split_linear(self,
|
||||
input_node: ctypes._Pointer,
|
||||
output_channels: int,
|
||||
input_channels: int,
|
||||
n_splits: int,
|
||||
act_dtype: npt.DTypeLike = np.float16,
|
||||
wt_dtype: npt.DTypeLike = np.float16,
|
||||
scale_factor: bool = False):
|
||||
op = super().dq_split_linear(input_node, n_splits, output_channels, input_channels,
|
||||
False, act_dtype, wt_dtype, scale_factor)
|
||||
self.linear_ops.append(op)
|
||||
return op
|
||||
|
||||
def parameter(self, shape):
|
||||
invalidInputError(False,
|
||||
("parameter should not be called directly, "
|
||||
|
|
|
|||
|
|
@ -42,7 +42,27 @@ from ipex_llm.transformers.npu_models.mp_models_base import LLMBaseNNFactory
|
|||
from ipex_llm.transformers.npu_models.common import reshape_lm_head_input
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2MLP
|
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2MLP, Qwen2Attention
|
||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||
from ipex_llm.transformers.npu_models.common import split_linear
|
||||
|
||||
|
||||
def split_linears(module: torch.nn.Module, n_splits_hidden_size=2, n_splits_down_proj=2):
|
||||
attn_module_names = ["q_proj", "k_proj", "v_proj", "o_proj"]
|
||||
mlp_module_names = ["down_proj", "up_proj", "gate_proj"]
|
||||
if isinstance(module, Qwen2Attention):
|
||||
for name in attn_module_names:
|
||||
setattr(module, f"{name}_dq_list", split_linear(getattr(module, name), name,
|
||||
n_splits=n_splits_hidden_size))
|
||||
delattr(module, name)
|
||||
elif isinstance(module, Qwen2MLP):
|
||||
for name in mlp_module_names:
|
||||
n_splits_mlp = n_splits_hidden_size
|
||||
if name == 'down_proj':
|
||||
n_splits_mlp = n_splits_down_proj
|
||||
setattr(module, f"{name}_dq_list", split_linear(getattr(module, name), name,
|
||||
n_splits=n_splits_mlp))
|
||||
delattr(module, name)
|
||||
|
||||
|
||||
def split_mlp_down_proj(module: torch.nn.Module):
|
||||
|
|
@ -94,12 +114,18 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
|
|||
device: str = "NPU",
|
||||
rms_norm_eps,
|
||||
intermediate_size,
|
||||
n_splits_linear: int = 1,
|
||||
n_splits_down_proj: int = 1,
|
||||
group_size: int = 0
|
||||
):
|
||||
super().__init__(max_seq_len=max_seq_len,
|
||||
transpose_value=transpose_value,
|
||||
dtype=dtype,
|
||||
profile=profile,
|
||||
device=device)
|
||||
device=device,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size)
|
||||
self.max_seq_len = max_seq_len
|
||||
self.intermediate_size = intermediate_size
|
||||
self.dtype = dtype
|
||||
|
|
@ -221,32 +247,9 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
|
|||
new_key_states = self.convert_to_fp16(curr_key_values[i][0])
|
||||
new_value_states = self.convert_to_fp16(curr_key_values[i][1])
|
||||
|
||||
print("start compiling")
|
||||
print(f"{mode} start compiling")
|
||||
self.compile()
|
||||
print("end compiling")
|
||||
|
||||
def mlp(self, hidden_states, seq_len):
|
||||
mm1 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
mm2 = self.linear(
|
||||
hidden_states, self.intermediate_size, self.hidden_size, bias=False, wt_dtype=self.dtype
|
||||
) # type: ignore[attr-defined]
|
||||
mm1 = self.eltwise_mul(self.swish(mm1), mm2) # type: ignore[attr-defined]
|
||||
if self.intermediate_size == 18944:
|
||||
# for qwen2-7b
|
||||
mm1_0 = self.slice(mm1, begin=[0, 0, 0], end=[1, seq_len, 9472])
|
||||
mm1_1 = self.slice(mm1, begin=[0, 0, 9472], end=[1, seq_len, 18944])
|
||||
hidden_states_0 = self.linear(mm1_0, self.hidden_size, 9472,
|
||||
bias=False, wt_dtype=self.dtype)
|
||||
hidden_states_1 = self.linear(mm1_1, self.hidden_size, 9472,
|
||||
bias=False, wt_dtype=self.dtype)
|
||||
hidden_states = hidden_states_0 + hidden_states_1
|
||||
else:
|
||||
hidden_states = self.linear(
|
||||
mm1, self.hidden_size, self.intermediate_size, bias=False, wt_dtype=self.dtype
|
||||
)
|
||||
return hidden_states
|
||||
print(f"{mode} end compiling")
|
||||
|
||||
def build_decoder(
|
||||
self,
|
||||
|
|
@ -285,7 +288,7 @@ class LowBitQwenMultiDecoderlayer(LLMBaseNNFactory):
|
|||
hidden_states = self.eltwise_add(residual, attn_output)
|
||||
residual = hidden_states
|
||||
hidden_states = self.layer_norm(hidden_states, post_attention_layernorm_weight)
|
||||
hidden_states = self.mlp(hidden_states, self.seq_len)
|
||||
hidden_states = self.mlp(hidden_states, self.seq_len, self.mode)
|
||||
hidden_states = self.eltwise_add(residual, hidden_states)
|
||||
hidden_states = self.convert_to_fp16(hidden_states)
|
||||
|
||||
|
|
@ -314,6 +317,9 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
max_seq_len: int = 1024,
|
||||
transpose_value: bool = False,
|
||||
do_print: bool = False,
|
||||
n_splits_linear: int = 1,
|
||||
n_splits_down_proj: int = 1,
|
||||
group_size: int = 0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
|
@ -323,6 +329,10 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
for w in parameters:
|
||||
if isinstance(w, tuple): # from QuantizedLinear
|
||||
op_parameters.append((w[0].numpy(), w[1].numpy()))
|
||||
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
|
||||
op_parameters.append(w.numpy())
|
||||
elif isinstance(w, np.ndarray): # scale
|
||||
op_parameters.append(w)
|
||||
else:
|
||||
op_parameters.append(w.to(torch.float16).numpy())
|
||||
self.op_parameters = op_parameters
|
||||
|
|
@ -331,6 +341,10 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
self.transpose_value = transpose_value
|
||||
if isinstance(parameters[0], tuple):
|
||||
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
|
||||
elif parameters[0].dtype == torch.int8:
|
||||
np_dtype = np.int8
|
||||
elif parameters[0].dtype == torch.uint8:
|
||||
np_dtype = np.uint8
|
||||
else: # FP16 Linear
|
||||
np_dtype = np.float16
|
||||
|
||||
|
|
@ -368,6 +382,9 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
|
|||
mode="decode",
|
||||
transpose_value=self.transpose_value,
|
||||
dtype=np_dtype,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size
|
||||
)
|
||||
self.backend_decoders.append(decoder)
|
||||
|
||||
|
|
@ -450,6 +467,9 @@ class FusedQwenLowBitDecoderlayer(torch.nn.Module):
|
|||
intermediate_size,
|
||||
max_seq_len: int = 128,
|
||||
transpose_value: bool = False,
|
||||
n_splits_linear: int = 1,
|
||||
n_splits_down_proj: int = 1,
|
||||
group_size: int = 0,
|
||||
):
|
||||
super().__init__()
|
||||
self.op_parameters = parameters
|
||||
|
|
@ -478,6 +498,9 @@ class FusedQwenLowBitDecoderlayer(torch.nn.Module):
|
|||
mode="prefill",
|
||||
transpose_value=self.transpose_value,
|
||||
dtype=np_dtype,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size
|
||||
)
|
||||
self.layer_norm_0 = layer_norm_0
|
||||
self.layer_norm_1 = layer_norm_1
|
||||
|
|
@ -554,6 +577,7 @@ def run_decode(
|
|||
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
intermediate_size = model.config.intermediate_size
|
||||
group_size = getattr(model.config, "group_size", 0)
|
||||
layer_weights = []
|
||||
input_layer_norm_weights = []
|
||||
post_attn_layernorm_weights = []
|
||||
|
|
@ -561,34 +585,56 @@ def run_decode(
|
|||
k_biases = []
|
||||
v_biases = []
|
||||
layer_indexs = range(layer_start, layer_end)
|
||||
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
||||
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
||||
for layer_idx in layer_indexs:
|
||||
curr_layer = model.model.layers[layer_idx]
|
||||
attn_layer = curr_layer.self_attn
|
||||
mlp_layer = curr_layer.mlp
|
||||
|
||||
if model.config.intermediate_size == 8960:
|
||||
# for qwen2-1.5b
|
||||
weights = [
|
||||
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
||||
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
||||
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
||||
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
||||
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
||||
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
||||
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
|
||||
]
|
||||
elif model.config.intermediate_size == 18944:
|
||||
# for qwen2-7b
|
||||
weights = [
|
||||
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
||||
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
||||
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
||||
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
||||
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
||||
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
||||
(mlp_layer.down_proj_0.weight, mlp_layer.down_proj_0.scale),
|
||||
(mlp_layer.down_proj_1.weight, mlp_layer.down_proj_1.scale)
|
||||
]
|
||||
weights = []
|
||||
if n_splits_linear == 1:
|
||||
for q, k, v in zip(attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
|
||||
attn_layer.v_proj_dq_list):
|
||||
weights.append((q.weight, q.scale))
|
||||
weights.append((k.weight, k.scale))
|
||||
weights.append((v.weight, v.scale))
|
||||
|
||||
for l in attn_layer.o_proj_dq_list:
|
||||
weights.append((l.weight, l.scale))
|
||||
else:
|
||||
for layer_list in [attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
|
||||
attn_layer.v_proj_dq_list, attn_layer.o_proj_dq_list]:
|
||||
l_weights = []
|
||||
scales = []
|
||||
for l in layer_list:
|
||||
l_weights.append(l.weight)
|
||||
scales.append(l.scale)
|
||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||
|
||||
if n_splits_linear == 1:
|
||||
for g, u in zip(mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list):
|
||||
weights.append((g.weight, g.scale))
|
||||
weights.append((u.weight, u.scale))
|
||||
else:
|
||||
for layer_list in [mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list]:
|
||||
l_weights = []
|
||||
scales = []
|
||||
for l in layer_list:
|
||||
l_weights.append(l.weight)
|
||||
scales.append(l.scale)
|
||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||
|
||||
if n_splits_down_proj == 1:
|
||||
for l in mlp_layer.down_proj_dq_list:
|
||||
weights.append((l.weight, l.scale))
|
||||
else:
|
||||
l_weights = []
|
||||
scales = []
|
||||
for l in mlp_layer.down_proj_dq_list:
|
||||
l_weights.append(l.weight)
|
||||
scales.append(l.scale)
|
||||
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
|
||||
|
||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
|
||||
|
|
@ -598,9 +644,9 @@ def run_decode(
|
|||
layer_weights.extend(weights)
|
||||
input_layer_norm_weights.append(layer_norm_0)
|
||||
post_attn_layernorm_weights.append(layer_norm_1)
|
||||
q_biases.append(attn_layer.q_proj.bias.to(torch.float16))
|
||||
k_biases.append(attn_layer.k_proj.bias.to(torch.float16))
|
||||
v_biases.append(attn_layer.v_proj.bias.to(torch.float16))
|
||||
q_biases.append(attn_layer.q_proj_dq_list.q_proj_dq_0.bias.to(torch.float16))
|
||||
k_biases.append(attn_layer.k_proj_dq_list.k_proj_dq_0.bias.to(torch.float16))
|
||||
v_biases.append(attn_layer.v_proj_dq_list.v_proj_dq_0.bias.to(torch.float16))
|
||||
|
||||
multi_decoder = FusedQwenLowBitMultiDecoderlayer(
|
||||
parameters=layer_weights,
|
||||
|
|
@ -621,6 +667,9 @@ def run_decode(
|
|||
max_seq_len=max_seq_len,
|
||||
transpose_value=transpose_value_cache,
|
||||
do_print=False,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size
|
||||
)
|
||||
|
||||
dist.barrier()
|
||||
|
|
@ -703,11 +752,15 @@ class DecodeRunner:
|
|||
|
||||
self.forward_signal = torch.tensor(0, dtype=torch.int)
|
||||
|
||||
n_layers_per_rank = num_layers // (world_size - 1)
|
||||
if num_layers % (world_size - 1) > 0:
|
||||
n_layers_per_rank += 1
|
||||
|
||||
for rank in range(1, world_size):
|
||||
input_q = mp.Queue()
|
||||
output_q = mp.Queue()
|
||||
start_layer = (rank - 1) * (num_layers // (world_size - 1))
|
||||
end_layer = (rank) * (num_layers // (world_size - 1))
|
||||
start_layer = (rank - 1) * n_layers_per_rank
|
||||
end_layer = (rank) * n_layers_per_rank
|
||||
if rank == world_size - 1:
|
||||
end_layer = num_layers
|
||||
p = mp.Process(
|
||||
|
|
@ -787,39 +840,34 @@ def run_prefill(
|
|||
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
||||
rms_norm_eps = model.config.rms_norm_eps
|
||||
intermediate_size = model.config.intermediate_size
|
||||
group_size = getattr(model.config, "group_size", 0)
|
||||
deocderlayers = []
|
||||
layer_weights = []
|
||||
input_layer_norm_weights = []
|
||||
post_attn_layernorm_weights = []
|
||||
layer_indexs = range(layer_start, layer_end)
|
||||
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
|
||||
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
|
||||
for layer_idx in layer_indexs:
|
||||
curr_layer = model.model.layers[layer_idx]
|
||||
attn_layer = curr_layer.self_attn
|
||||
mlp_layer = curr_layer.mlp
|
||||
|
||||
if model.config.intermediate_size == 8960:
|
||||
# for qwen2-1.5b
|
||||
weights = [
|
||||
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
||||
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
||||
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
||||
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
||||
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
||||
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
||||
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
|
||||
]
|
||||
elif model.config.intermediate_size == 18944:
|
||||
# for qwen2-7b
|
||||
weights = [
|
||||
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
|
||||
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
|
||||
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
|
||||
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
|
||||
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
|
||||
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
|
||||
(mlp_layer.down_proj_0.weight, mlp_layer.down_proj_0.scale),
|
||||
(mlp_layer.down_proj_1.weight, mlp_layer.down_proj_1.scale)
|
||||
]
|
||||
weights = []
|
||||
|
||||
for q, k, v in zip(attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
|
||||
attn_layer.v_proj_dq_list):
|
||||
weights.append((q.weight, q.scale))
|
||||
weights.append((k.weight, k.scale))
|
||||
weights.append((v.weight, v.scale))
|
||||
|
||||
for l in attn_layer.o_proj_dq_list:
|
||||
weights.append((l.weight, l.scale))
|
||||
for g, u in zip(mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list):
|
||||
weights.append((g.weight, g.scale))
|
||||
weights.append((u.weight, u.scale))
|
||||
for l in mlp_layer.down_proj_dq_list:
|
||||
weights.append((l.weight, l.scale))
|
||||
|
||||
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
|
||||
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
|
||||
|
|
@ -835,14 +883,17 @@ def run_prefill(
|
|||
cached_sin=cached_sin,
|
||||
layer_norm_0=layer_norm_0,
|
||||
layer_norm_1=layer_norm_1,
|
||||
q_bias=attn_layer.q_proj.bias.to(torch.float16),
|
||||
k_bias=attn_layer.k_proj.bias.to(torch.float16),
|
||||
v_bias=attn_layer.v_proj.bias.to(torch.float16),
|
||||
q_bias=attn_layer.q_proj_dq_list.q_proj_dq_0.bias.to(torch.float16),
|
||||
k_bias=attn_layer.k_proj_dq_list.k_proj_dq_0.bias.to(torch.float16),
|
||||
v_bias=attn_layer.v_proj_dq_list.v_proj_dq_0.bias.to(torch.float16),
|
||||
layer_idx=layer_idx,
|
||||
rms_norm_eps=rms_norm_eps,
|
||||
intermediate_size=intermediate_size,
|
||||
max_seq_len=max_output_len,
|
||||
transpose_value=transpose_value_cache,
|
||||
n_splits_linear=n_splits_linear,
|
||||
n_splits_down_proj=n_splits_down_proj,
|
||||
group_size=group_size
|
||||
)
|
||||
|
||||
layer_weights.extend(weights)
|
||||
|
|
|
|||
Loading…
Reference in a new issue