Modify html table style and add fp16.csv in harness (#10169)

* Specify the version of pandas in harness evaluation workflow

* Specify the version of pandas in harness evaluation workflow

* Modify html table style and add fp16.csv in harness

* Modify comments
This commit is contained in:
yb-peng 2024-02-19 18:13:40 +08:00 committed by GitHub
parent 6c09aed90d
commit e31210ba00
3 changed files with 78 additions and 194 deletions

View file

@ -0,0 +1,6 @@
Index,Model,Precision,Arc,TruthfulQA,Winogrande
0,falcon-7b-instruct-with-patch,fp16,46.16,44.08,67.96
1,Llama2-7b-guanaco-dolphin-500,fp16,56.74,46.96,74.27
2,Baichuan2-7B-Chat-LLaMAfied,fp16,52.47,48.04,69.14
3,Mistral-7B-v0.1,fp16,59.98,42.15,78.37
4,mpt-7b-chat,fp16,46.50,40.16,68.43
1 Index Model Precision Arc TruthfulQA Winogrande
2 0 falcon-7b-instruct-with-patch fp16 46.16 44.08 67.96
3 1 Llama2-7b-guanaco-dolphin-500 fp16 56.74 46.96 74.27
4 2 Baichuan2-7B-Chat-LLaMAfied fp16 52.47 48.04 69.14
5 3 Mistral-7B-v0.1 fp16 59.98 42.15 78.37
6 4 mpt-7b-chat fp16 46.50 40.16 68.43

View file

@ -34,8 +34,8 @@ def nonzero_min(lst):
non_zero_lst = [num for num in lst if num > 0.0]
return min(non_zero_lst) if non_zero_lst else None
def is_diffs_within_normal_range(diff1, diff2, diff3, threshold=5.0):
return not any(diff < (-threshold) for diff in diff1 + diff2 + diff3 if isinstance(diff, float))
def is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=5.0):
return not any(diff < (-threshold) for diff in diff_Arc + diff_TruthfulQA + diff_Winogrande if isinstance(diff, float))
def add_to_dict(dict, key, value):
if key not in dict:
@ -50,6 +50,26 @@ def best_in_dict(dict, key, value):
return value
return value
def create_fp16_dict(fp16_path):
fp16_df = pd.read_csv(fp16_path)
fp16_dict = {}
for _, row in fp16_df.iterrows():
model = row['Model']
# Formalize the data to have 2 decimal places
fp16_dict[model] = {
'Arc': "{:.2f}".format(row['Arc']),
'TruthfulQA': "{:.2f}".format(row['TruthfulQA']),
'Winogrande': "{:.2f}".format(row['Winogrande'])
}
return fp16_dict
def calculate_percentage_difference(current, fp16):
if fp16 != 'N/A' and current != 'N/A' and float(fp16) != 0:
return (float(current) - float(fp16)) / float(fp16) * 100
else:
return 'N/A'
def main():
parser = argparse.ArgumentParser(description="convert .csv file to .html file")
parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
@ -60,6 +80,8 @@ def main():
help="the baseline path which stores the baseline.csv file")
args = parser.parse_args()
fp16_dict = create_fp16_dict('fp16.csv')
csv_files = []
for file_name in os.listdir(args.folder_path):
file_path = os.path.join(args.folder_path, file_name)
@ -72,27 +94,29 @@ def main():
latest_csv = pd.read_csv(csv_files[0], index_col=0)
daily_html=csv_files[0].split(".")[0]+".html"
# Reset index
latest_csv.reset_index(inplace=True)
diffs_within_normal_range = True
# Add display of FP16 values for each model and add percentage difference column
for task in ['Arc', 'TruthfulQA', 'Winogrande']:
latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
if len(csv_files)>1:
if args.baseline_path:
previous_csv = pd.read_csv(args.baseline_path, index_col=0)
else:
previous_csv = pd.read_csv(csv_files[1], index_col=0)
last1=['']*len(latest_csv.index)
diff1=['']*len(latest_csv.index)
last2=['']*len(latest_csv.index)
diff2=['']*len(latest_csv.index)
last3=['']*len(latest_csv.index)
diff3=['']*len(latest_csv.index)
last_Arc=['']*len(latest_csv.index)
diff_Arc=['']*len(latest_csv.index)
last_TruthfulQA=['']*len(latest_csv.index)
diff_TruthfulQA=['']*len(latest_csv.index)
last_Winogrande=['']*len(latest_csv.index)
diff_Winogrande=['']*len(latest_csv.index)
best_last1=['']*len(latest_csv.index)
best_diff1=['']*len(latest_csv.index)
best_last2=['']*len(latest_csv.index)
best_diff2=['']*len(latest_csv.index)
best_last3=['']*len(latest_csv.index)
best_diff3=['']*len(latest_csv.index)
Arc='Arc'
TruthfulQA='TruthfulQA'
@ -119,21 +143,6 @@ def main():
latest_truthfulqa=latest_csv_row[TruthfulQA]
latest_winogrande=latest_csv_row[Winogrande]
key1=latest_csv_model+'-'+latest_csv_precision+'-'+'Arc'
key2=latest_csv_model+'-'+latest_csv_precision+'-'+'TruthfulQA'
key3=latest_csv_model+'-'+latest_csv_precision+'-'+'Winogrande'
best_last1_value=best_in_dict(csv_dict, key1, latest_arc)
best_last2_value=best_in_dict(csv_dict, key2, latest_truthfulqa)
best_last3_value=best_in_dict(csv_dict, key3, latest_winogrande)
best_last1[latest_csv_ind]=best_last1_value
best_diff1[latest_csv_ind]=round((best_last1_value-latest_arc)*100/best_last1_value,2)
best_last2[latest_csv_ind]=best_last2_value
best_diff2[latest_csv_ind]=round((best_last2_value-latest_truthfulqa)*100/best_last2_value,2)
best_last3[latest_csv_ind]=best_last3_value
best_diff3[latest_csv_ind]=round((best_last3_value-latest_winogrande)*100/best_last3_value,2)
in_previous_flag=False
for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
@ -147,48 +156,50 @@ def main():
previous_truthfulqa=previous_csv_row[TruthfulQA]
previous_winogrande=previous_csv_row[Winogrande]
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
last1[latest_csv_ind]=previous_arc
diff1[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
last2[latest_csv_ind]=previous_truthfulqa
diff2[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
last3[latest_csv_ind]=previous_winogrande
diff3[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
last_Arc[latest_csv_ind]=previous_arc
diff_Arc[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
diff_TruthfulQA[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
last_Winogrande[latest_csv_ind]=previous_winogrande
diff_Winogrande[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
in_previous_flag=True
if not in_previous_flag:
last1[latest_csv_ind]=pd.NA
diff1[latest_csv_ind]=pd.NA
last2[latest_csv_ind]=pd.NA
diff2[latest_csv_ind]=pd.NA
last3[latest_csv_ind]=pd.NA
diff3[latest_csv_ind]=pd.NA
last_Arc[latest_csv_ind]=pd.NA
diff_Arc[latest_csv_ind]=pd.NA
last_TruthfulQA[latest_csv_ind]=pd.NA
diff_TruthfulQA[latest_csv_ind]=pd.NA
last_Winogrande[latest_csv_ind]=pd.NA
diff_Winogrande[latest_csv_ind]=pd.NA
latest_csv.insert(loc=5,column='last1',value=last1)
latest_csv.insert(loc=6,column='diff1(%)',value=diff1)
latest_csv.insert(loc=7,column='last2',value=last2)
latest_csv.insert(loc=8,column='diff2(%)',value=diff2)
latest_csv.insert(loc=9,column='last3',value=last3)
latest_csv.insert(loc=10,column='diff3(%)',value=diff3)
latest_csv.insert(loc=5,column='last_Arc',value=last_Arc)
latest_csv.insert(loc=6,column='diff_Arc(%)',value=diff_Arc)
latest_csv.insert(loc=7,column='last_TruthfulQA',value=last_TruthfulQA)
latest_csv.insert(loc=8,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
latest_csv.insert(loc=9,column='last_Winogrande',value=last_Winogrande)
latest_csv.insert(loc=10,column='diff_Winogrande(%)',value=diff_Winogrande)
latest_csv.insert(loc=11,column='best 1',value=best_last1)
latest_csv.insert(loc=12,column='best diff1(%)',value=best_diff1)
latest_csv.insert(loc=13,column='best 2',value=best_last2)
latest_csv.insert(loc=14,column='best diff2(%)',value=best_diff2)
latest_csv.insert(loc=15,column='best 3',value=best_last3)
latest_csv.insert(loc=16,column='best diff3(%)',value=best_diff3)
diffs_within_normal_range = is_diffs_within_normal_range(diff1, diff2, diff3, threshold=highlight_threshold)
diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
subset1=['diff1(%)','diff2(%)','diff3(%)' ]
subset2=['best diff1(%)','best diff2(%)','best diff3(%)']
subset1=['diff_Arc(%)','diff_TruthfulQA(%)','diff_Winogrande(%)' ]
columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'last3': '{:.2f}', 'diff3(%)': '{:.2f}',
'best 1': '{:.2f}', 'best diff1(%)': '{:.2f}', 'best 2': '{:.2f}', 'best diff2(%)': '{:.2f}', 'best 3': '{:.2f}', 'best diff3(%)': '{:.2f}'}
columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last_Arc': '{:.2f}', 'diff_Arc(%)': '{:.2f}',
'last_TruthfulQA': '{:.2f}', 'diff_TruthfulQA(%)': '{:.2f}', 'last_Winogrande': '{:.2f}', 'diff_Winogrande(%)': '{:.2f}'}
latest_csv.drop('Index', axis=1, inplace=True)
styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, color1='red', color2='green'), subset=subset1)
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=3.0, color1='yellow'), subset=subset2)
html_output = styled_df.set_table_attributes("border=1").render()
for task in ['Arc', 'TruthfulQA', 'Winogrande']:
styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, color1='red', color2='green'), subset=[f'{task}_diff_FP16(%)'])
# add css style to restrict width and wrap text
styled_df.set_table_styles([{
'selector': 'th, td',
'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
}], overwrite=False)
html_output = styled_df.set_table_attributes("border=1").to_html()
with open(daily_html, 'w') as f:
f.write(html_output)

View file

@ -1,133 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Usage:
python make_table_results.py <input_dir>
"""
import logging
from pytablewriter import MarkdownTableWriter, LatexTableWriter
import os
import json
import sys
import csv
import datetime
from harness_to_leaderboard import task_to_metric
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def make_table(result_dict):
"""Generate table of results."""
md_writer = MarkdownTableWriter()
latex_writer = LatexTableWriter()
md_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
latex_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
tasks = ["arc", "hellaswag", "mmlu", "truthfulqa", "winogrande", "gsm8k"]
values = []
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
value = [model, precision]
for task in tasks:
task_results = prec_results.get(task, None)
if task_results is None:
value.append("")
else:
m = task_to_metric[task]
results = task_results["results"]
if len(results) > 1:
result = results[task]
else:
result = list(results.values())[0]
value.append("%.2f" % (result[m] * 100))
values.append(value)
model = ""
precision = ""
md_writer.value_matrix = values
latex_writer.value_matrix = values
# todo: make latex table look good
# print(latex_writer.dumps())
return md_writer.dumps()
def make_csv(result_dict, output_path=None):
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
file_name = f'results_{current_date}.csv'
full_path = os.path.join(output_path, file_name) if output_path else file_name
print('Writing to', full_path)
file_name = full_path
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
with open(file_name, mode='w', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(headers)
index = 0
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
row = [index, model, precision]
for task in headers[3:]:
task_results = prec_results.get(task.lower(), None)
if task_results is None:
row.append("")
else:
m = task_to_metric[task.lower()]
results = task_results["results"]
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
row.append("%.2f" % (result[m] * 100))
writer.writerow(row)
index += 1
def merge_results(args):
# loop dirs and subdirs in results dir
# for each dir, load json files
path = args[1]
print('Read from', path)
merged_results = dict()
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
# skip dirs without files
if not filenames:
continue
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
path = os.path.join(dirpath, filename)
model, device, precision, task = dirpath.split('/')[-4:]
with open(path, "r") as f:
result_dict = json.load(f)
if model not in merged_results:
merged_results[model] = dict()
if precision not in merged_results[model]:
merged_results[model][precision] = dict()
merged_results[model][precision][task] = result_dict
# args[2] is the output path
make_csv(merged_results, args[2])
return merged_results
def main(*args):
merged_results = merge_results(args)
print(make_table(merged_results))
if __name__ == "__main__":
# when running from the harness, the first argument is the script name
# you must name the second argument and the third argument to be the input_dir and output_dir
main(*sys.argv)