Modify html table style and add fp16.csv in harness (#10169)
* Specify the version of pandas in harness evaluation workflow * Specify the version of pandas in harness evaluation workflow * Modify html table style and add fp16.csv in harness * Modify comments
This commit is contained in:
		
							parent
							
								
									6c09aed90d
								
							
						
					
					
						commit
						e31210ba00
					
				
					 3 changed files with 78 additions and 194 deletions
				
			
		
							
								
								
									
										6
									
								
								python/llm/dev/benchmark/harness/fp16.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								python/llm/dev/benchmark/harness/fp16.csv
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,6 @@
 | 
			
		|||
Index,Model,Precision,Arc,TruthfulQA,Winogrande
 | 
			
		||||
0,falcon-7b-instruct-with-patch,fp16,46.16,44.08,67.96
 | 
			
		||||
1,Llama2-7b-guanaco-dolphin-500,fp16,56.74,46.96,74.27
 | 
			
		||||
2,Baichuan2-7B-Chat-LLaMAfied,fp16,52.47,48.04,69.14
 | 
			
		||||
3,Mistral-7B-v0.1,fp16,59.98,42.15,78.37
 | 
			
		||||
4,mpt-7b-chat,fp16,46.50,40.16,68.43
 | 
			
		||||
		
		
			
  | 
| 
						 | 
				
			
			@ -34,8 +34,8 @@ def nonzero_min(lst):
 | 
			
		|||
    non_zero_lst = [num for num in lst if num > 0.0]
 | 
			
		||||
    return min(non_zero_lst) if non_zero_lst else None
 | 
			
		||||
 | 
			
		||||
def is_diffs_within_normal_range(diff1, diff2, diff3, threshold=5.0):
 | 
			
		||||
    return not any(diff < (-threshold) for diff in diff1 + diff2 + diff3 if isinstance(diff, float))
 | 
			
		||||
def is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=5.0):
 | 
			
		||||
    return not any(diff < (-threshold) for diff in diff_Arc + diff_TruthfulQA + diff_Winogrande if isinstance(diff, float))
 | 
			
		||||
 | 
			
		||||
def add_to_dict(dict, key, value):
 | 
			
		||||
    if key not in dict:
 | 
			
		||||
| 
						 | 
				
			
			@ -50,6 +50,26 @@ def best_in_dict(dict, key, value):
 | 
			
		|||
        return value
 | 
			
		||||
    return value
 | 
			
		||||
 | 
			
		||||
def create_fp16_dict(fp16_path):
 | 
			
		||||
    fp16_df = pd.read_csv(fp16_path)
 | 
			
		||||
    fp16_dict = {}
 | 
			
		||||
    for _, row in fp16_df.iterrows():
 | 
			
		||||
        model = row['Model']
 | 
			
		||||
        # Formalize the data to have 2 decimal places
 | 
			
		||||
        fp16_dict[model] = {
 | 
			
		||||
            'Arc': "{:.2f}".format(row['Arc']),
 | 
			
		||||
            'TruthfulQA': "{:.2f}".format(row['TruthfulQA']),
 | 
			
		||||
            'Winogrande': "{:.2f}".format(row['Winogrande'])
 | 
			
		||||
        }
 | 
			
		||||
    return fp16_dict
 | 
			
		||||
 | 
			
		||||
def calculate_percentage_difference(current, fp16):
 | 
			
		||||
    if fp16 != 'N/A' and current != 'N/A' and float(fp16) != 0:
 | 
			
		||||
        return (float(current) - float(fp16)) / float(fp16) * 100
 | 
			
		||||
    else:
 | 
			
		||||
        return 'N/A'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
			
		||||
    parser.add_argument("-f", "--folder_path", type=str, dest="folder_path",
 | 
			
		||||
| 
						 | 
				
			
			@ -60,6 +80,8 @@ def main():
 | 
			
		|||
                        help="the baseline path which stores the baseline.csv file")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    fp16_dict = create_fp16_dict('fp16.csv')
 | 
			
		||||
 | 
			
		||||
    csv_files = []
 | 
			
		||||
    for file_name in os.listdir(args.folder_path):
 | 
			
		||||
        file_path = os.path.join(args.folder_path, file_name)
 | 
			
		||||
| 
						 | 
				
			
			@ -72,27 +94,29 @@ def main():
 | 
			
		|||
    latest_csv = pd.read_csv(csv_files[0], index_col=0)
 | 
			
		||||
    daily_html=csv_files[0].split(".")[0]+".html"
 | 
			
		||||
 | 
			
		||||
    # Reset index
 | 
			
		||||
    latest_csv.reset_index(inplace=True)
 | 
			
		||||
 | 
			
		||||
    diffs_within_normal_range = True
 | 
			
		||||
 | 
			
		||||
    # Add display of FP16 values for each model and add percentage difference column
 | 
			
		||||
    for task in ['Arc', 'TruthfulQA', 'Winogrande']:
 | 
			
		||||
        latest_csv[f'{task}_FP16'] = latest_csv['Model'].apply(lambda model: fp16_dict.get(model, {}).get(task, 'N/A'))
 | 
			
		||||
        latest_csv[f'{task}_diff_FP16(%)'] = latest_csv.apply(lambda row: calculate_percentage_difference(row[task], row[f'{task}_FP16']), axis=1)
 | 
			
		||||
 | 
			
		||||
    if len(csv_files)>1:
 | 
			
		||||
        if args.baseline_path:
 | 
			
		||||
            previous_csv = pd.read_csv(args.baseline_path, index_col=0)
 | 
			
		||||
        else:
 | 
			
		||||
            previous_csv = pd.read_csv(csv_files[1], index_col=0)
 | 
			
		||||
 | 
			
		||||
        last1=['']*len(latest_csv.index)
 | 
			
		||||
        diff1=['']*len(latest_csv.index)
 | 
			
		||||
        last2=['']*len(latest_csv.index)
 | 
			
		||||
        diff2=['']*len(latest_csv.index)
 | 
			
		||||
        last3=['']*len(latest_csv.index)
 | 
			
		||||
        diff3=['']*len(latest_csv.index)
 | 
			
		||||
        last_Arc=['']*len(latest_csv.index)
 | 
			
		||||
        diff_Arc=['']*len(latest_csv.index)
 | 
			
		||||
        last_TruthfulQA=['']*len(latest_csv.index)
 | 
			
		||||
        diff_TruthfulQA=['']*len(latest_csv.index)
 | 
			
		||||
        last_Winogrande=['']*len(latest_csv.index)
 | 
			
		||||
        diff_Winogrande=['']*len(latest_csv.index)
 | 
			
		||||
 | 
			
		||||
        best_last1=['']*len(latest_csv.index)
 | 
			
		||||
        best_diff1=['']*len(latest_csv.index)
 | 
			
		||||
        best_last2=['']*len(latest_csv.index)
 | 
			
		||||
        best_diff2=['']*len(latest_csv.index)
 | 
			
		||||
        best_last3=['']*len(latest_csv.index)
 | 
			
		||||
        best_diff3=['']*len(latest_csv.index)
 | 
			
		||||
 | 
			
		||||
        Arc='Arc'
 | 
			
		||||
        TruthfulQA='TruthfulQA'
 | 
			
		||||
| 
						 | 
				
			
			@ -119,21 +143,6 @@ def main():
 | 
			
		|||
            latest_truthfulqa=latest_csv_row[TruthfulQA]
 | 
			
		||||
            latest_winogrande=latest_csv_row[Winogrande]
 | 
			
		||||
 | 
			
		||||
            key1=latest_csv_model+'-'+latest_csv_precision+'-'+'Arc'
 | 
			
		||||
            key2=latest_csv_model+'-'+latest_csv_precision+'-'+'TruthfulQA'
 | 
			
		||||
            key3=latest_csv_model+'-'+latest_csv_precision+'-'+'Winogrande'
 | 
			
		||||
 | 
			
		||||
            best_last1_value=best_in_dict(csv_dict, key1, latest_arc)
 | 
			
		||||
            best_last2_value=best_in_dict(csv_dict, key2, latest_truthfulqa)
 | 
			
		||||
            best_last3_value=best_in_dict(csv_dict, key3, latest_winogrande)
 | 
			
		||||
 | 
			
		||||
            best_last1[latest_csv_ind]=best_last1_value
 | 
			
		||||
            best_diff1[latest_csv_ind]=round((best_last1_value-latest_arc)*100/best_last1_value,2)
 | 
			
		||||
            best_last2[latest_csv_ind]=best_last2_value
 | 
			
		||||
            best_diff2[latest_csv_ind]=round((best_last2_value-latest_truthfulqa)*100/best_last2_value,2)
 | 
			
		||||
            best_last3[latest_csv_ind]=best_last3_value
 | 
			
		||||
            best_diff3[latest_csv_ind]=round((best_last3_value-latest_winogrande)*100/best_last3_value,2)
 | 
			
		||||
 | 
			
		||||
            in_previous_flag=False
 | 
			
		||||
 | 
			
		||||
            for previous_csv_ind,previous_csv_row in previous_csv.iterrows():
 | 
			
		||||
| 
						 | 
				
			
			@ -147,48 +156,50 @@ def main():
 | 
			
		|||
                    previous_truthfulqa=previous_csv_row[TruthfulQA]
 | 
			
		||||
                    previous_winogrande=previous_csv_row[Winogrande]
 | 
			
		||||
                    if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
 | 
			
		||||
                        last1[latest_csv_ind]=previous_arc
 | 
			
		||||
                        diff1[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
 | 
			
		||||
                        last2[latest_csv_ind]=previous_truthfulqa
 | 
			
		||||
                        diff2[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
 | 
			
		||||
                        last3[latest_csv_ind]=previous_winogrande
 | 
			
		||||
                        diff3[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
 | 
			
		||||
                        last_Arc[latest_csv_ind]=previous_arc
 | 
			
		||||
                        diff_Arc[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
 | 
			
		||||
                        last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
 | 
			
		||||
                        diff_TruthfulQA[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
 | 
			
		||||
                        last_Winogrande[latest_csv_ind]=previous_winogrande
 | 
			
		||||
                        diff_Winogrande[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
 | 
			
		||||
                        in_previous_flag=True
 | 
			
		||||
 | 
			
		||||
            if not in_previous_flag:
 | 
			
		||||
                last1[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff1[latest_csv_ind]=pd.NA
 | 
			
		||||
                last2[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff2[latest_csv_ind]=pd.NA
 | 
			
		||||
                last3[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff3[latest_csv_ind]=pd.NA
 | 
			
		||||
                last_Arc[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff_Arc[latest_csv_ind]=pd.NA
 | 
			
		||||
                last_TruthfulQA[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff_TruthfulQA[latest_csv_ind]=pd.NA
 | 
			
		||||
                last_Winogrande[latest_csv_ind]=pd.NA
 | 
			
		||||
                diff_Winogrande[latest_csv_ind]=pd.NA
 | 
			
		||||
 | 
			
		||||
        latest_csv.insert(loc=5,column='last1',value=last1)
 | 
			
		||||
        latest_csv.insert(loc=6,column='diff1(%)',value=diff1)
 | 
			
		||||
        latest_csv.insert(loc=7,column='last2',value=last2)
 | 
			
		||||
        latest_csv.insert(loc=8,column='diff2(%)',value=diff2)
 | 
			
		||||
        latest_csv.insert(loc=9,column='last3',value=last3)
 | 
			
		||||
        latest_csv.insert(loc=10,column='diff3(%)',value=diff3)
 | 
			
		||||
        latest_csv.insert(loc=5,column='last_Arc',value=last_Arc)
 | 
			
		||||
        latest_csv.insert(loc=6,column='diff_Arc(%)',value=diff_Arc)
 | 
			
		||||
        latest_csv.insert(loc=7,column='last_TruthfulQA',value=last_TruthfulQA)
 | 
			
		||||
        latest_csv.insert(loc=8,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
 | 
			
		||||
        latest_csv.insert(loc=9,column='last_Winogrande',value=last_Winogrande)
 | 
			
		||||
        latest_csv.insert(loc=10,column='diff_Winogrande(%)',value=diff_Winogrande)
 | 
			
		||||
 | 
			
		||||
        latest_csv.insert(loc=11,column='best 1',value=best_last1)
 | 
			
		||||
        latest_csv.insert(loc=12,column='best diff1(%)',value=best_diff1)
 | 
			
		||||
        latest_csv.insert(loc=13,column='best 2',value=best_last2)
 | 
			
		||||
        latest_csv.insert(loc=14,column='best diff2(%)',value=best_diff2)
 | 
			
		||||
        latest_csv.insert(loc=15,column='best 3',value=best_last3)
 | 
			
		||||
        latest_csv.insert(loc=16,column='best diff3(%)',value=best_diff3)
 | 
			
		||||
 | 
			
		||||
        diffs_within_normal_range = is_diffs_within_normal_range(diff1, diff2, diff3, threshold=highlight_threshold)
 | 
			
		||||
        diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
 | 
			
		||||
 | 
			
		||||
        subset1=['diff1(%)','diff2(%)','diff3(%)' ]
 | 
			
		||||
        subset2=['best diff1(%)','best diff2(%)','best diff3(%)']
 | 
			
		||||
        subset1=['diff_Arc(%)','diff_TruthfulQA(%)','diff_Winogrande(%)' ]
 | 
			
		||||
        
 | 
			
		||||
        columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}',
 | 
			
		||||
                'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'last3': '{:.2f}', 'diff3(%)': '{:.2f}',
 | 
			
		||||
                'best 1': '{:.2f}', 'best diff1(%)': '{:.2f}', 'best 2': '{:.2f}', 'best diff2(%)': '{:.2f}', 'best 3': '{:.2f}', 'best diff3(%)': '{:.2f}'}
 | 
			
		||||
        columns={'Arc': '{:.2f}', 'TruthfulQA': '{:.2f}', 'Winogrande': '{:.2f}', 'last_Arc': '{:.2f}', 'diff_Arc(%)': '{:.2f}',
 | 
			
		||||
                'last_TruthfulQA': '{:.2f}', 'diff_TruthfulQA(%)': '{:.2f}', 'last_Winogrande': '{:.2f}', 'diff_Winogrande(%)': '{:.2f}'}
 | 
			
		||||
 | 
			
		||||
        latest_csv.drop('Index', axis=1, inplace=True)
 | 
			
		||||
 | 
			
		||||
        styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, color1='red', color2='green'), subset=subset1)
 | 
			
		||||
        styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=3.0, color1='yellow'), subset=subset2)
 | 
			
		||||
        html_output = styled_df.set_table_attributes("border=1").render()
 | 
			
		||||
        for task in ['Arc', 'TruthfulQA', 'Winogrande']:
 | 
			
		||||
            styled_df = styled_df.applymap(lambda val: highlight_vals(val, max=highlight_threshold, color1='red', color2='green'), subset=[f'{task}_diff_FP16(%)'])
 | 
			
		||||
        
 | 
			
		||||
        # add css style to restrict width and wrap text
 | 
			
		||||
        styled_df.set_table_styles([{
 | 
			
		||||
            'selector': 'th, td',
 | 
			
		||||
            'props': [('max-width', '88px'), ('word-wrap', 'break-word')]
 | 
			
		||||
        }], overwrite=False)
 | 
			
		||||
        
 | 
			
		||||
        html_output = styled_df.set_table_attributes("border=1").to_html()
 | 
			
		||||
 | 
			
		||||
        with open(daily_html, 'w') as f:
 | 
			
		||||
            f.write(html_output)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,133 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
"""
 | 
			
		||||
Usage:
 | 
			
		||||
   python make_table_results.py <input_dir>
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
from pytablewriter import MarkdownTableWriter, LatexTableWriter
 | 
			
		||||
import os
 | 
			
		||||
import json
 | 
			
		||||
import sys
 | 
			
		||||
import csv
 | 
			
		||||
import datetime
 | 
			
		||||
from harness_to_leaderboard import task_to_metric
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logging.basicConfig(level=logging.INFO)
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def make_table(result_dict):
 | 
			
		||||
    """Generate table of results."""
 | 
			
		||||
    md_writer = MarkdownTableWriter()
 | 
			
		||||
    latex_writer = LatexTableWriter()
 | 
			
		||||
    md_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
 | 
			
		||||
    latex_writer.headers = ["Model", "Precision", "Arc", "Hellaswag", "MMLU", "TruthfulQA","Winogrande", "GSM8K"]
 | 
			
		||||
 | 
			
		||||
    tasks = ["arc", "hellaswag", "mmlu", "truthfulqa", "winogrande", "gsm8k"]
 | 
			
		||||
    values = []
 | 
			
		||||
    for model, model_results in result_dict.items():
 | 
			
		||||
        for precision, prec_results in model_results.items():
 | 
			
		||||
            value = [model, precision]
 | 
			
		||||
            for task in tasks:
 | 
			
		||||
 | 
			
		||||
                task_results = prec_results.get(task, None)
 | 
			
		||||
                if task_results is None:
 | 
			
		||||
                    value.append("")
 | 
			
		||||
                else:
 | 
			
		||||
                    m = task_to_metric[task]
 | 
			
		||||
                    results = task_results["results"]
 | 
			
		||||
                    if len(results) > 1:
 | 
			
		||||
                        result = results[task]
 | 
			
		||||
                    else:
 | 
			
		||||
                        result = list(results.values())[0]
 | 
			
		||||
                    value.append("%.2f" % (result[m] * 100))
 | 
			
		||||
            values.append(value)
 | 
			
		||||
            model = ""    
 | 
			
		||||
            precision = ""
 | 
			
		||||
        
 | 
			
		||||
    md_writer.value_matrix = values
 | 
			
		||||
    latex_writer.value_matrix = values
 | 
			
		||||
 | 
			
		||||
    # todo: make latex table look good
 | 
			
		||||
    # print(latex_writer.dumps())
 | 
			
		||||
 | 
			
		||||
    return md_writer.dumps()
 | 
			
		||||
 | 
			
		||||
def make_csv(result_dict, output_path=None):
 | 
			
		||||
    current_date = datetime.datetime.now().strftime("%Y-%m-%d")
 | 
			
		||||
    file_name = f'results_{current_date}.csv'
 | 
			
		||||
    full_path = os.path.join(output_path, file_name) if output_path else file_name
 | 
			
		||||
    print('Writing to', full_path)
 | 
			
		||||
    file_name = full_path
 | 
			
		||||
    headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]
 | 
			
		||||
    
 | 
			
		||||
    with open(file_name, mode='w', newline='') as csv_file:
 | 
			
		||||
        writer = csv.writer(csv_file)
 | 
			
		||||
        writer.writerow(headers)
 | 
			
		||||
        index = 0
 | 
			
		||||
        for model, model_results in result_dict.items():
 | 
			
		||||
            for precision, prec_results in model_results.items():
 | 
			
		||||
                row = [index, model, precision]
 | 
			
		||||
                for task in headers[3:]:
 | 
			
		||||
                    task_results = prec_results.get(task.lower(), None)
 | 
			
		||||
                    if task_results is None:
 | 
			
		||||
                        row.append("")
 | 
			
		||||
                    else:
 | 
			
		||||
                        m = task_to_metric[task.lower()]
 | 
			
		||||
                        results = task_results["results"]
 | 
			
		||||
                        result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
 | 
			
		||||
                        row.append("%.2f" % (result[m] * 100))
 | 
			
		||||
                writer.writerow(row)
 | 
			
		||||
                index += 1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_results(args):
 | 
			
		||||
    # loop dirs and subdirs in results dir
 | 
			
		||||
    # for each dir, load json files
 | 
			
		||||
    path = args[1]
 | 
			
		||||
    print('Read from', path)
 | 
			
		||||
    merged_results = dict()
 | 
			
		||||
    for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
 | 
			
		||||
        # skip dirs without files
 | 
			
		||||
        if not filenames:
 | 
			
		||||
            continue
 | 
			
		||||
        for filename in sorted([f for f in filenames if f.endswith("result.json")]):
 | 
			
		||||
            path = os.path.join(dirpath, filename)
 | 
			
		||||
            model, device, precision, task = dirpath.split('/')[-4:]
 | 
			
		||||
            with open(path, "r") as f:
 | 
			
		||||
                result_dict = json.load(f)
 | 
			
		||||
            if model not in merged_results:
 | 
			
		||||
                merged_results[model] = dict()
 | 
			
		||||
            if precision not in merged_results[model]:
 | 
			
		||||
                merged_results[model][precision] = dict()
 | 
			
		||||
            merged_results[model][precision][task] = result_dict
 | 
			
		||||
    # args[2] is the output path
 | 
			
		||||
    make_csv(merged_results, args[2])         
 | 
			
		||||
    return merged_results
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main(*args):
 | 
			
		||||
    merged_results = merge_results(args)
 | 
			
		||||
    print(make_table(merged_results)) 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # when running from the harness, the first argument is the script name
 | 
			
		||||
    # you must name the second argument and the third argument to be the input_dir and output_dir
 | 
			
		||||
    main(*sys.argv)
 | 
			
		||||
		Loading…
	
		Reference in a new issue