optimize llama3.2 vision again (#12211)
This commit is contained in:
parent
f17cc4fdee
commit
e279148aa0
2 changed files with 259 additions and 14 deletions
|
|
@ -1023,6 +1023,9 @@ def _optimize_pre(model, qtype=None):
|
||||||
if model.config.model_type == "llama":
|
if model.config.model_type == "llama":
|
||||||
from ipex_llm.transformers.models.llama import merge_qkv
|
from ipex_llm.transformers.models.llama import merge_qkv
|
||||||
model.apply(merge_qkv)
|
model.apply(merge_qkv)
|
||||||
|
if model.config.model_type == "mllama":
|
||||||
|
from ipex_llm.transformers.models.mllama import merge_qkv
|
||||||
|
model.apply(merge_qkv)
|
||||||
if model.config.model_type == "minicpm":
|
if model.config.model_type == "minicpm":
|
||||||
from ipex_llm.transformers.models.minicpm import merge_qkv
|
from ipex_llm.transformers.models.minicpm import merge_qkv
|
||||||
model.apply(merge_qkv)
|
model.apply(merge_qkv)
|
||||||
|
|
@ -1284,12 +1287,19 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
# llama 3.2 vision
|
# llama 3.2 vision
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
from ipex_llm.transformers.models.common import rms_norm_forward
|
|
||||||
from ipex_llm.transformers.models.common import mlp_silu_forward
|
|
||||||
from ipex_llm.transformers.models.mllama import mllama_vision_attention_forward
|
from ipex_llm.transformers.models.mllama import mllama_vision_attention_forward
|
||||||
convert_forward(model, module.MllamaVisionAttention, mllama_vision_attention_forward)
|
convert_forward(model, module.MllamaVisionAttention, mllama_vision_attention_forward)
|
||||||
|
|
||||||
|
from ipex_llm.transformers.models.common import rms_norm_forward
|
||||||
|
from ipex_llm.transformers.models.common import mlp_silu_forward
|
||||||
|
from ipex_llm.transformers.models.llama32 import llama_attention_forward
|
||||||
|
from ipex_llm.transformers.models.mllama import mllama_text_model_forward
|
||||||
|
from ipex_llm.transformers.models.mllama import mllama_cross_attention_forward
|
||||||
convert_forward(model, module.MllamaTextRMSNorm, rms_norm_forward)
|
convert_forward(model, module.MllamaTextRMSNorm, rms_norm_forward)
|
||||||
convert_forward(model, module.MllamaTextMLP, mlp_silu_forward)
|
convert_forward(model, module.MllamaTextMLP, mlp_silu_forward)
|
||||||
|
convert_forward(model, module.MllamaTextModel, mllama_text_model_forward)
|
||||||
|
convert_forward(model, module.MllamaTextSelfAttention, llama_attention_forward)
|
||||||
|
convert_forward(model, module.MllamaTextCrossAttention, mllama_cross_attention_forward)
|
||||||
elif model.config.model_type == "llama":
|
elif model.config.model_type == "llama":
|
||||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||||
from transformers.models.llama.modeling_llama import LlamaMLP
|
from transformers.models.llama.modeling_llama import LlamaMLP
|
||||||
|
|
|
||||||
|
|
@ -35,8 +35,23 @@
|
||||||
import math
|
import math
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from typing import Optional
|
from typing import Optional, Tuple, Union
|
||||||
from ipex_llm.transformers.models.utils import use_sdp_non_causal
|
from transformers.cache_utils import Cache
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.models.mllama.modeling_mllama import MllamaVisionAttention
|
||||||
|
from transformers.models.mllama.modeling_mllama import MllamaTextSelfAttention
|
||||||
|
from transformers.models.mllama.modeling_mllama import repeat_kv
|
||||||
|
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, use_sdp_non_causal
|
||||||
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||||
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
|
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
|
||||||
|
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
|
||||||
|
from ipex_llm.transformers.utils import invalidInputError
|
||||||
|
|
||||||
|
|
||||||
|
def merge_qkv(module: torch.nn.Module):
|
||||||
|
merge_qkv_base(module, MllamaVisionAttention)
|
||||||
|
merge_qkv_base(module, MllamaTextSelfAttention)
|
||||||
|
|
||||||
|
|
||||||
def mllama_vision_attention_forward(
|
def mllama_vision_attention_forward(
|
||||||
|
|
@ -45,16 +60,12 @@ def mllama_vision_attention_forward(
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
output_attentions: bool = None,
|
output_attentions: bool = None,
|
||||||
):
|
):
|
||||||
query = self.q_proj(hidden_state)
|
bsz, q_len, _ = hidden_state.size()
|
||||||
key = self.k_proj(hidden_state)
|
|
||||||
value = self.v_proj(hidden_state)
|
|
||||||
|
|
||||||
batch_size, q_seq_len, _ = query.shape
|
qkv = self.qkv_proj(hidden_state)
|
||||||
_, kv_seq_len, _ = key.shape
|
qkv = qkv.view(bsz, q_len, 3 * self.num_heads, self.head_dim)
|
||||||
|
qkv = qkv.transpose(1, 2)
|
||||||
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
query, key, value = qkv.chunk(3, dim=1)
|
||||||
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
|
|
||||||
if attention_mask is not None: # no matter the length, we just slice it
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
||||||
|
|
@ -79,7 +90,7 @@ def mllama_vision_attention_forward(
|
||||||
attn_output = torch.matmul(attn_weights, value)
|
attn_output = torch.matmul(attn_weights, value)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||||
|
|
||||||
output = self.o_proj(attn_output)
|
output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
|
@ -87,3 +98,227 @@ def mllama_vision_attention_forward(
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
||||||
return output, attn_weights
|
return output, attn_weights
|
||||||
|
|
||||||
|
|
||||||
|
def mllama_text_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
cross_attention_states: Optional[torch.FloatTensor] = None,
|
||||||
|
cross_attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
full_text_row_masked_out_mask: Optional[torch.Tensor] = None,
|
||||||
|
past_key_values: Optional[Cache] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
output_attentions = (
|
||||||
|
output_attentions if output_attentions is not None
|
||||||
|
else self.config.output_attentions
|
||||||
|
)
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None
|
||||||
|
else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
|
||||||
|
# IPEX-LLM OPT start: kv cache and quantize kv cache
|
||||||
|
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||||
|
use_cache = True if inputs.device.type == "xpu" else use_cache
|
||||||
|
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
|
||||||
|
if use_cache:
|
||||||
|
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
|
||||||
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
|
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
|
||||||
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
|
# IPEX-LLM OPT end
|
||||||
|
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
invalidInputError((input_ids is None) ^ (inputs_embeds is None),
|
||||||
|
"You cannot specify both input_ids and inputs_embeds at the same time, "
|
||||||
|
"and must specify either one")
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
if cache_position is None:
|
||||||
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||||
|
cache_position = torch.arange(
|
||||||
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1],
|
||||||
|
device=inputs_embeds.device
|
||||||
|
)
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = cache_position.unsqueeze(0)
|
||||||
|
|
||||||
|
causal_mask = self._update_causal_mask(
|
||||||
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||||
|
)
|
||||||
|
|
||||||
|
# create position embeddings to be shared across the decoder layers
|
||||||
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||||||
|
|
||||||
|
# IPEX-LLM OPT start: use fused rope
|
||||||
|
if (should_use_fuse_rope(hidden_states, position_ids, False)
|
||||||
|
and self.rotary_emb.rope_type == "llama3"):
|
||||||
|
position_embeddings = self.rotary_emb.inv_freq
|
||||||
|
# IEPX_LLM OPT end
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for idx, decoder_layer in enumerate(self.layers):
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
# For text-only path we should skip cross attention layers.
|
||||||
|
# Let's check if the layer is cross attention layer and if we have cross attention states
|
||||||
|
# or cached cross attention states.
|
||||||
|
is_cross_attention_layer = idx in self.cross_attention_layers
|
||||||
|
|
||||||
|
# IPEX-LLM change start
|
||||||
|
if is_cross_attention_layer and cross_attention_states is None:
|
||||||
|
if past_key_values is None:
|
||||||
|
# use_cache=False
|
||||||
|
continue
|
||||||
|
elif len(past_key_values.key_cache) <= idx:
|
||||||
|
# first token but no cross_attention_states, means no image inputs
|
||||||
|
past_key_values.key_cache.append([])
|
||||||
|
past_key_values.value_cache.append([])
|
||||||
|
continue
|
||||||
|
elif past_key_values.key_cache[idx] == []:
|
||||||
|
# next token but no cross kv cache, means no image inputs
|
||||||
|
continue
|
||||||
|
# IPEX-LLM change end
|
||||||
|
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
cross_attention_states=cross_attention_states,
|
||||||
|
cross_attention_mask=cross_attention_mask,
|
||||||
|
attention_mask=causal_mask,
|
||||||
|
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
position_embeddings=position_embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
|
if v is not None)
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def mllama_cross_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
cross_attention_states: Optional[torch.Tensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
):
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
query_states = self.q_norm(query_states.view(-1, self.head_dim))
|
||||||
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
if cross_attention_states is not None:
|
||||||
|
key_states = self.k_proj(cross_attention_states)
|
||||||
|
value_states = self.v_proj(cross_attention_states)
|
||||||
|
key_states = self.k_norm(key_states.view(-1, self.head_dim))
|
||||||
|
key_states = key_states.view(bsz, -1, self.num_key_value_heads,
|
||||||
|
self.head_dim).transpose(1, 2)
|
||||||
|
value_states = value_states.view(bsz, -1, self.num_key_value_heads,
|
||||||
|
self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
# if we have a new image + new tokens, we only computed key_states on that new image
|
||||||
|
# we still update the cross key states, past_image, new_image. And use it!
|
||||||
|
key_states, value_states = past_key_value.update(
|
||||||
|
key_states, value_states, self.layer_idx, None
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
key_states, value_states = (
|
||||||
|
past_key_value.key_cache[self.layer_idx],
|
||||||
|
past_key_value.value_cache[self.layer_idx],
|
||||||
|
)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.size(2)
|
||||||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
|
causal_mask = attention_mask[:, :, :, :kv_seq_len]
|
||||||
|
else:
|
||||||
|
causal_mask = None
|
||||||
|
|
||||||
|
attn_weights = None
|
||||||
|
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||||
|
import xe_addons
|
||||||
|
if isinstance(past_key_value, DynamicFp8Cache):
|
||||||
|
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
|
||||||
|
else:
|
||||||
|
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
|
||||||
|
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||||
|
import xe_addons
|
||||||
|
if isinstance(past_key_value, DynamicFp8Cache):
|
||||||
|
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||||
|
value_states, causal_mask)
|
||||||
|
else:
|
||||||
|
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
||||||
|
value_states, causal_mask)
|
||||||
|
else:
|
||||||
|
if isinstance(past_key_value, DynamicFp8Cache):
|
||||||
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
|
query_states.dtype)
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
attn_weights = torch.matmul(query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if causal_mask is not None:
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = attention_softmax(attn_weights, self.training)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue