parent
							
								
									ab40607b87
								
							
						
					
					
						commit
						e2264e8845
					
				
					 3 changed files with 15 additions and 10 deletions
				
			
		| 
						 | 
				
			
			@ -33,7 +33,8 @@ ggml_tensor_qtype = {"sym_int4": 2,   # q4_0 in ggml
 | 
			
		|||
                     "nf4": 10,
 | 
			
		||||
                     "nf3": 11,
 | 
			
		||||
                     "fp16": 12,
 | 
			
		||||
                     "fp8": 15}
 | 
			
		||||
                     "fp8": 15,
 | 
			
		||||
                     "fp4": 16}
 | 
			
		||||
 | 
			
		||||
_llama_quantize_type = {"q4_0": 2,
 | 
			
		||||
                        "q4_1": 3,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -65,6 +65,7 @@ SYM_INT8 = ggml_tensor_qtype["sym_int8"]
 | 
			
		|||
NF4 = ggml_tensor_qtype["nf4"]
 | 
			
		||||
NF3 = ggml_tensor_qtype["nf3"]
 | 
			
		||||
FP8 = ggml_tensor_qtype["fp8"]
 | 
			
		||||
FP4 = ggml_tensor_qtype["fp4"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
 | 
			
		||||
| 
						 | 
				
			
			@ -108,7 +109,7 @@ def ggml_q_format_convet_cpu2xpu(tensor: torch.Tensor, num_elem: int, qtype: int
 | 
			
		|||
 | 
			
		||||
    src = ctypes.c_void_p(tensor.data.data_ptr())
 | 
			
		||||
 | 
			
		||||
    if qtype in [SYM_INT4, SYM_INT8, NF4, NF3]:
 | 
			
		||||
    if qtype in [SYM_INT4, SYM_INT8, NF4, NF3, FP4]:
 | 
			
		||||
        dst_tensor = torch.empty_like(tensor)
 | 
			
		||||
    elif qtype == ggml_tensor_qtype["sym_int5"]:
 | 
			
		||||
        QK = ggml.ggml_qk_size(qtype)
 | 
			
		||||
| 
						 | 
				
			
			@ -133,7 +134,7 @@ def ggml_q_format_convet_xpu2cpu(tensor: torch.Tensor, num_elem: int, qtype: int
 | 
			
		|||
 | 
			
		||||
    src = ctypes.c_void_p(tensor.data.data_ptr())
 | 
			
		||||
 | 
			
		||||
    if qtype in [SYM_INT4, SYM_INT8, NF4, NF3]:
 | 
			
		||||
    if qtype in [SYM_INT4, SYM_INT8, NF4, NF3, FP4]:
 | 
			
		||||
        dst_tensor = torch.empty_like(tensor)
 | 
			
		||||
    elif qtype == ggml_tensor_qtype["sym_int5"]:
 | 
			
		||||
        QK = ggml.ggml_qk_size(ggml_tensor_qtype["asym_int5"])
 | 
			
		||||
| 
						 | 
				
			
			@ -387,8 +388,10 @@ class LowBitLinear(nn.Linear):
 | 
			
		|||
        else:
 | 
			
		||||
            # CPU logic
 | 
			
		||||
            # todo may need to set a different number on different platforms
 | 
			
		||||
            invalidInputError(self.qtype != NF3 and self.qtype != NF4 and self.qtype != FP8,
 | 
			
		||||
                              "NF3, NF4 and FP8 quantization are currently not supported on CPU")
 | 
			
		||||
            invalidInputError(self.qtype != NF3 and self.qtype != NF4 and self.qtype != FP8
 | 
			
		||||
                              and self.qtype != FP4,
 | 
			
		||||
                              "NF3, NF4, FP4 and FP8 quantization are currently not"
 | 
			
		||||
                              " supported on CPU")
 | 
			
		||||
            if IS_SERVER and (not IS_SPR) and \
 | 
			
		||||
                    self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
 | 
			
		||||
                x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -60,9 +60,10 @@ class _BaseAutoModelClass:
 | 
			
		|||
        :param load_in_4bit: boolean value, True means load linear's weight to symmetric int 4.
 | 
			
		||||
                             Default to be False.
 | 
			
		||||
        :param load_in_low_bit: str value, options are sym_int4, asym_int4, sym_int5, asym_int5
 | 
			
		||||
                                , sym_int8, nf3, nf4 or fp16. sym_int4 means symmetric int 4,
 | 
			
		||||
                                asym_int4 means asymmetric int 4, nf4 means 4-bit NormalFloat, etc.
 | 
			
		||||
                                 Relevant low bit optimizations will be applied to the model.
 | 
			
		||||
                                , sym_int8, nf3, nf4, fp4, fp8 or fp16. sym_int4 means symmetric
 | 
			
		||||
                                 int 4, asym_int4 means asymmetric int 4, nf4 means 4-bit
 | 
			
		||||
                                 NormalFloat, etc. Relevant low bit optimizations will be applied
 | 
			
		||||
                                 to the model.
 | 
			
		||||
        :param optimize_model: boolean value, Whether to further optimize the low_bit llm model.
 | 
			
		||||
                               Default to be True.
 | 
			
		||||
        :param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped when
 | 
			
		||||
| 
						 | 
				
			
			@ -106,8 +107,8 @@ class _BaseAutoModelClass:
 | 
			
		|||
        from .convert import ggml_convert_low_bit
 | 
			
		||||
        invalidInputError(q_k in ggml_tensor_qtype,
 | 
			
		||||
                          f"Unknown load_in_low_bit value: {q_k}, expected:"
 | 
			
		||||
                          f" sym_int4, asym_int4, sym_int5, asym_int5, sym_int8, nf3, nf4 "
 | 
			
		||||
                          "or fp16.")
 | 
			
		||||
                          f" sym_int4, asym_int4, sym_int5, asym_int5, sym_int8, nf3, nf4, "
 | 
			
		||||
                          "fp4, fp8 or fp16.")
 | 
			
		||||
        qtype = ggml_tensor_qtype[q_k]
 | 
			
		||||
 | 
			
		||||
        # In case it needs a second try,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue