[LLM] apply allreduce and bias to training in LowBitLinear (#9395)
This commit is contained in:
		
							parent
							
								
									40cead6b5b
								
							
						
					
					
						commit
						df8e4d7889
					
				
					 1 changed files with 8 additions and 8 deletions
				
			
		| 
						 | 
				
			
			@ -463,7 +463,7 @@ class LowBitLinear(nn.Linear):
 | 
			
		|||
            if self.training and x.requires_grad:
 | 
			
		||||
                result = MatMulLowBitCPU.apply(x, self.weight)
 | 
			
		||||
            else:
 | 
			
		||||
                # Step 1. convert if necessary, and compute a linear result
 | 
			
		||||
                # convert if necessary, and compute a linear result
 | 
			
		||||
                if IS_SERVER and (not IS_SPR) and \
 | 
			
		||||
                        self.qtype == SYM_INT4 and x_2d.shape[0] >= TORCH_LINEAR_THRESHOLD:
 | 
			
		||||
                    x0_fp32 = ggml_int4_convert_fp32(x0, self.weight_shape, self.weight_length)
 | 
			
		||||
| 
						 | 
				
			
			@ -473,7 +473,7 @@ class LowBitLinear(nn.Linear):
 | 
			
		|||
                    result = ggml_matmul_src1_x_src0_t(x0, x_2d, self.weight_shape, self.qtype)
 | 
			
		||||
                    new_shape = x_shape[:-1] + (self.out_len,)
 | 
			
		||||
                    result = result.view(new_shape)
 | 
			
		||||
                # Step 2. allreduce to combine partial results and add bias if necessary
 | 
			
		||||
            # allreduce to combine partial results and add bias if necessary
 | 
			
		||||
            if self.mp_group is not None:
 | 
			
		||||
                # deepspeed distibuted mode
 | 
			
		||||
                from deepspeed import comm as dist
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue