[LLM] Enable kv_cache and forward_qkv optimizations for yuan2 (#10225)
* add init kv_cache support for yuan2 * add forward qkv in yuan
This commit is contained in:
		
							parent
							
								
									85a99e13e8
								
							
						
					
					
						commit
						df2f3885ba
					
				
					 1 changed files with 83 additions and 66 deletions
				
			
		| 
						 | 
				
			
			@ -20,13 +20,32 @@
 | 
			
		|||
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/README.md#%E5%A3%B0%E6%98%8E%E4%B8%8E%E5%8D%8F%E8%AE%AEterms-and-conditions
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import copy
 | 
			
		||||
import math
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
 | 
			
		||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
			
		||||
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31
 | 
			
		||||
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def use_decoding_fast_path(q_type, use_fuse_rope, enough_kv_room, bs):
 | 
			
		||||
    return q_type in [SYM_INT4, FP8E5] and \
 | 
			
		||||
        use_fuse_rope and enough_kv_room and bs == 1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def should_use_fuse_rope(self, hidden_states, position_ids):
 | 
			
		||||
    use_fuse_rope = hidden_states.device.type == "xpu"
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
 | 
			
		||||
    use_fuse_rope = use_fuse_rope and position_ids is not None
 | 
			
		||||
    return use_fuse_rope
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def yuan_attention_forward(
 | 
			
		||||
| 
						 | 
				
			
			@ -39,8 +58,13 @@ def yuan_attention_forward(
 | 
			
		|||
    use_cache: bool = False,
 | 
			
		||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
			
		||||
    bsz, q_len, _ = hidden_states.size()
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    before_hidden_states = None
 | 
			
		||||
    is_first_step = False
 | 
			
		||||
    self.use_shareqk = False
 | 
			
		||||
 | 
			
		||||
    enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value)
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        if past_key_value is None:
 | 
			
		||||
            inference_hidden_states_memory = torch.empty(bsz, 2,
 | 
			
		||||
| 
						 | 
				
			
			@ -64,7 +88,9 @@ def yuan_attention_forward(
 | 
			
		|||
 | 
			
		||||
    value_states = \
 | 
			
		||||
        self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    if self.use_shareqk:
 | 
			
		||||
        # use_shareqk is disabled for now
 | 
			
		||||
        qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim)
 | 
			
		||||
        query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
 | 
			
		||||
        query_states, key_states = torch.unbind(query_key, dim=2)
 | 
			
		||||
| 
						 | 
				
			
			@ -95,80 +121,71 @@ def yuan_attention_forward(
 | 
			
		|||
 | 
			
		||||
    if past_key_value is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        key_states = torch.cat([past_key_value[0], key_states], dim=2)
 | 
			
		||||
        value_states = torch.cat([past_key_value[1], value_states], dim=2)
 | 
			
		||||
        cache_k = past_key_value[0]
 | 
			
		||||
        cache_v = past_key_value[1]
 | 
			
		||||
        if not enough_kv_room:
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
			
		||||
                                                       self.num_heads,
 | 
			
		||||
                                                       self.head_dim,
 | 
			
		||||
                                                       cache_k.size(2),
 | 
			
		||||
                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                                                       dtype=cache_k.d_type,
 | 
			
		||||
                                                       device=device)
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
			
		||||
                                                         self.num_heads,
 | 
			
		||||
                                                         self.head_dim,
 | 
			
		||||
                                                         kv_seq_len,
 | 
			
		||||
                                                         max_cache_length,
 | 
			
		||||
                                                         dtype=key_states.dtype,
 | 
			
		||||
                                                         device=device)
 | 
			
		||||
        new_key_states[:] = key_states
 | 
			
		||||
        new_value_states[:] = value_states
 | 
			
		||||
        key_states = new_key_states
 | 
			
		||||
        value_states = new_value_states
 | 
			
		||||
 | 
			
		||||
    past_key_value = \
 | 
			
		||||
        (key_states, value_states, inference_hidden_states_memory) if use_cache else None
 | 
			
		||||
 | 
			
		||||
    if self.use_flash_attention:
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
        query_states = query_states.transpose(1, 2)
 | 
			
		||||
        key_states = key_states.transpose(1, 2)
 | 
			
		||||
        value_states = value_states.transpose(1, 2)
 | 
			
		||||
    attn_weights = \
 | 
			
		||||
        torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        batch_size, seqlen_q = query_states.shape[0], query_states.shape[1]
 | 
			
		||||
        seqlen_k = key_states.shape[1]
 | 
			
		||||
    invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                      "Attention weights should be of size "
 | 
			
		||||
                      f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
 | 
			
		||||
                      f"but is {attn_weights.size()}")
 | 
			
		||||
 | 
			
		||||
        q, k, v = \
 | 
			
		||||
            [rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                          f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
 | 
			
		||||
                          f"but is {attention_mask.size()}")
 | 
			
		||||
        attn_weights = attn_weights + attention_mask
 | 
			
		||||
        attn_weights = torch.max(attn_weights,
 | 
			
		||||
                                 torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
			
		||||
 | 
			
		||||
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q,
 | 
			
		||||
                                    step=seqlen_q,
 | 
			
		||||
                                    dtype=torch.int,
 | 
			
		||||
                                    device=q.device)
 | 
			
		||||
    # upcast attention to fp32
 | 
			
		||||
    attn_weights = \
 | 
			
		||||
        torch.nn.functional.softmax(attn_weights,
 | 
			
		||||
                                    dim=-1,
 | 
			
		||||
                                    dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
    attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
        if self.training:
 | 
			
		||||
            invalidInputError(seqlen_k == seqlen_q,
 | 
			
		||||
                              "`seqlen_k` should be equal to `seqlen_q`, but is not")
 | 
			
		||||
            cu_seqlens_k = cu_seqlens_q
 | 
			
		||||
            is_causal = self.causal_mask
 | 
			
		||||
        else:
 | 
			
		||||
            is_causal = seqlen_q == seqlen_k
 | 
			
		||||
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k,
 | 
			
		||||
                                        step=seqlen_k,
 | 
			
		||||
                                        dtype=torch.int,
 | 
			
		||||
                                        device=q.device)
 | 
			
		||||
            self.dropout = 0
 | 
			
		||||
 | 
			
		||||
        output = flash_attn_unpadded_func(
 | 
			
		||||
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
 | 
			
		||||
    else:
 | 
			
		||||
        attn_weights = \
 | 
			
		||||
            torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
 | 
			
		||||
                          "Attention weights should be of size "
 | 
			
		||||
                          f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
 | 
			
		||||
                          f"but is {attn_weights.size()}")
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
 | 
			
		||||
                              f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
 | 
			
		||||
                              f"but is {attention_mask.size()}")
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
            attn_weights = torch.max(attn_weights,
 | 
			
		||||
                                     torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = \
 | 
			
		||||
            torch.nn.functional.softmax(attn_weights,
 | 
			
		||||
                                        dim=-1,
 | 
			
		||||
                                        dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
        invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                          "`attn_output` should be of size "
 | 
			
		||||
                          f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
 | 
			
		||||
                          f"but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
        attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
 | 
			
		||||
                      "`attn_output` should be of size "
 | 
			
		||||
                      f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
 | 
			
		||||
                      f"but is {attn_output.size()}")
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2)
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
 | 
			
		||||
    attn_output = self.o_proj(attn_output)
 | 
			
		||||
 | 
			
		||||
    if not output_attentions:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue