[LLM] Enable kv_cache and forward_qkv optimizations for yuan2 (#10225)

* add init kv_cache support for yuan2

* add forward qkv in yuan
This commit is contained in:
SONG Ge 2024-02-26 11:29:48 +08:00 committed by GitHub
parent 85a99e13e8
commit df2f3885ba

View file

@ -20,13 +20,32 @@
# https://huggingface.co/IEITYuan/Yuan2-2B-hf/blob/7ab7b3c18eb8e5232ce2a3f720d4e6f4b53a2806/README.md#%E5%A3%B0%E6%98%8E%E4%B8%8E%E5%8D%8F%E8%AE%AEterms-and-conditions
#
import torch
import copy
import math
from einops import rearrange
from typing import Optional, Tuple
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
import torch
import torch.nn as nn
from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31
from bigdl.llm.transformers.low_bit_linear import SYM_INT4, FP8E5
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
def use_decoding_fast_path(q_type, use_fuse_rope, enough_kv_room, bs):
return q_type in [SYM_INT4, FP8E5] and \
use_fuse_rope and enough_kv_room and bs == 1
def should_use_fuse_rope(self, hidden_states, position_ids):
use_fuse_rope = hidden_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
use_fuse_rope = use_fuse_rope and position_ids is not None
return use_fuse_rope
def yuan_attention_forward(
@ -39,8 +58,13 @@ def yuan_attention_forward(
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
before_hidden_states = None
is_first_step = False
self.use_shareqk = False
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value)
if use_cache:
if past_key_value is None:
inference_hidden_states_memory = torch.empty(bsz, 2,
@ -64,7 +88,9 @@ def yuan_attention_forward(
value_states = \
self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if self.use_shareqk:
# use_shareqk is disabled for now
qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim)
query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
query_states, key_states = torch.unbind(query_key, dim=2)
@ -95,80 +121,71 @@ def yuan_attention_forward(
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.d_type,
device=device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = \
(key_states, value_states, inference_hidden_states_memory) if use_cache else None
if self.use_flash_attention:
attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_weights = \
torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
batch_size, seqlen_q = query_states.shape[0], query_states.shape[1]
seqlen_k = key_states.shape[1]
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
f"but is {attn_weights.size()}")
q, k, v = \
[rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q,
step=seqlen_q,
dtype=torch.int,
device=q.device)
# upcast attention to fp32
attn_weights = \
torch.nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if self.training:
invalidInputError(seqlen_k == seqlen_q,
"`seqlen_k` should be equal to `seqlen_q`, but is not")
cu_seqlens_k = cu_seqlens_q
is_causal = self.causal_mask
else:
is_causal = seqlen_q == seqlen_k
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k,
step=seqlen_k,
dtype=torch.int,
device=q.device)
self.dropout = 0
output = flash_attn_unpadded_func(
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal
)
attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
attn_weights = \
torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
invalidInputError(attn_weights.size() == (bsz, self.num_heads, q_len, kv_seq_len),
"Attention weights should be of size "
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, "
f"but is {attn_weights.size()}")
if attention_mask is not None:
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
f"but is {attention_mask.size()}")
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = \
torch.nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
f"but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
"`attn_output` should be of size "
f"{(bsz, self.num_heads, q_len, self.head_dim)}, "
f"but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions: