Modify harness evaluation workflow (#10174)
* Modify table head in harness * Specify the file path of fp16.csv * change run to run nightly and run pr to debug * Modify the way to get fp16.csv to downloading from github * Change the method to calculate diff in html table * Change the method to calculate diff in html table * Re-arrange job order * Re-arrange job order * Change limit * Change fp16.csv path * Change highlight rules * Change limit
This commit is contained in:
parent
b55fd00fb1
commit
de3dc609ee
2 changed files with 49 additions and 14 deletions
36
.github/workflows/llm-harness-evaluation.yml
vendored
36
.github/workflows/llm-harness-evaluation.yml
vendored
|
|
@ -166,7 +166,8 @@ jobs:
|
|||
fi
|
||||
|
||||
|
||||
- name: Run harness
|
||||
- name: Run harness nightly
|
||||
if: ${{github.event_name == 'schedule'}}
|
||||
shell: bash
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||
env:
|
||||
|
|
@ -185,6 +186,28 @@ jobs:
|
|||
--device ${{ matrix.device }} \
|
||||
--tasks ${{ matrix.task }} \
|
||||
--batch_size 1 --no_cache --output_path results \
|
||||
|
||||
- name: Run harness pr
|
||||
if: ${{github.event_name == 'pull_request'}}
|
||||
shell: bash
|
||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||
env:
|
||||
USE_XETLA: OFF
|
||||
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
||||
run: |
|
||||
export HF_HOME=${HARNESS_HF_HOME}
|
||||
export HF_DATASETS=$HARNESS_HF_HOME/datasets
|
||||
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
python run_llb.py \
|
||||
--model bigdl-llm \
|
||||
--pretrained ${MODEL_PATH} \
|
||||
--precision ${{ matrix.precision }} \
|
||||
--device ${{ matrix.device }} \
|
||||
--tasks ${{ matrix.task }} \
|
||||
--batch_size 1 --no_cache --output_path results \
|
||||
--limit 3 \
|
||||
|
||||
- uses: actions/upload-artifact@v3
|
||||
with:
|
||||
|
|
@ -226,7 +249,7 @@ jobs:
|
|||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py results
|
||||
|
||||
# TODO: change machine to store the results later
|
||||
llm-harness-summary-nightly:
|
||||
llm-harness-summary-html:
|
||||
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
|
||||
needs: [set-matrix, llm-harness-evaluation]
|
||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||
|
|
@ -267,6 +290,13 @@ jobs:
|
|||
name: harness_results
|
||||
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
|
||||
|
||||
# Save fp16.csv in the parent folder of env.nightly_folder
|
||||
- name: Download fp16.csv for summary
|
||||
shell: bash
|
||||
run: |
|
||||
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/dev/benchmark/harness/fp16.csv -O ${{ env.NIGHTLY_FOLDER}}/../fp16.csv
|
||||
ls ${{ env.NIGHTLY_FOLDER}}/..
|
||||
|
||||
- name: Summarize the results for nightly run
|
||||
if: github.event_name == 'schedule'
|
||||
shell: bash
|
||||
|
|
@ -275,7 +305,7 @@ jobs:
|
|||
pip install pandas==1.5.3
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.NIGHTLY_FOLDER}}
|
||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/harness_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
|
||||
|
||||
|
||||
- name: Summarize the results for pull request
|
||||
if: github.event_name == 'pull_request'
|
||||
shell: bash
|
||||
|
|
|
|||
|
|
@ -21,12 +21,14 @@ import sys
|
|||
import argparse
|
||||
import pandas as pd
|
||||
|
||||
def highlight_vals(val, max=3.0, color1='red', color2='green'):
|
||||
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow'):
|
||||
if isinstance(val, float):
|
||||
if val > max:
|
||||
return 'background-color: %s' % color2
|
||||
elif val <= -max:
|
||||
return 'background-color: %s' % color1
|
||||
elif val != 0.0:
|
||||
return 'background-color: %s' % color3
|
||||
else:
|
||||
return ''
|
||||
|
||||
|
|
@ -80,7 +82,10 @@ def main():
|
|||
help="the baseline path which stores the baseline.csv file")
|
||||
args = parser.parse_args()
|
||||
|
||||
fp16_dict = create_fp16_dict('fp16.csv')
|
||||
# fp16.csv is downloaded previously under the parent folder of the folder_path
|
||||
parent_dir = os.path.dirname((args.folder_path))
|
||||
fp16_path = os.path.join(parent_dir, 'fp16.csv')
|
||||
fp16_dict = create_fp16_dict(fp16_path)
|
||||
|
||||
csv_files = []
|
||||
for file_name in os.listdir(args.folder_path):
|
||||
|
|
@ -157,11 +162,11 @@ def main():
|
|||
previous_winogrande=previous_csv_row[Winogrande]
|
||||
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
|
||||
last_Arc[latest_csv_ind]=previous_arc
|
||||
diff_Arc[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
|
||||
diff_Arc[latest_csv_ind]=round((latest_arc-previous_arc)*100/previous_arc,2)
|
||||
last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
|
||||
diff_TruthfulQA[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
|
||||
diff_TruthfulQA[latest_csv_ind]=round((latest_truthfulqa-previous_truthfulqa)*100/previous_truthfulqa,2)
|
||||
last_Winogrande[latest_csv_ind]=previous_winogrande
|
||||
diff_Winogrande[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
|
||||
diff_Winogrande[latest_csv_ind]=round((latest_winogrande-previous_winogrande)*100/previous_winogrande,2)
|
||||
in_previous_flag=True
|
||||
|
||||
if not in_previous_flag:
|
||||
|
|
@ -172,12 +177,12 @@ def main():
|
|||
last_Winogrande[latest_csv_ind]=pd.NA
|
||||
diff_Winogrande[latest_csv_ind]=pd.NA
|
||||
|
||||
latest_csv.insert(loc=5,column='last_Arc',value=last_Arc)
|
||||
latest_csv.insert(loc=6,column='diff_Arc(%)',value=diff_Arc)
|
||||
latest_csv.insert(loc=7,column='last_TruthfulQA',value=last_TruthfulQA)
|
||||
latest_csv.insert(loc=8,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
|
||||
latest_csv.insert(loc=9,column='last_Winogrande',value=last_Winogrande)
|
||||
latest_csv.insert(loc=10,column='diff_Winogrande(%)',value=diff_Winogrande)
|
||||
latest_csv.insert(loc=6,column='last_Arc',value=last_Arc)
|
||||
latest_csv.insert(loc=7,column='diff_Arc(%)',value=diff_Arc)
|
||||
latest_csv.insert(loc=8,column='last_TruthfulQA',value=last_TruthfulQA)
|
||||
latest_csv.insert(loc=9,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
|
||||
latest_csv.insert(loc=10,column='last_Winogrande',value=last_Winogrande)
|
||||
latest_csv.insert(loc=11,column='diff_Winogrande(%)',value=diff_Winogrande)
|
||||
|
||||
|
||||
diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
|
||||
|
|
|
|||
Loading…
Reference in a new issue