Modify harness evaluation workflow (#10174)
* Modify table head in harness * Specify the file path of fp16.csv * change run to run nightly and run pr to debug * Modify the way to get fp16.csv to downloading from github * Change the method to calculate diff in html table * Change the method to calculate diff in html table * Re-arrange job order * Re-arrange job order * Change limit * Change fp16.csv path * Change highlight rules * Change limit
This commit is contained in:
parent
b55fd00fb1
commit
de3dc609ee
2 changed files with 49 additions and 14 deletions
36
.github/workflows/llm-harness-evaluation.yml
vendored
36
.github/workflows/llm-harness-evaluation.yml
vendored
|
|
@ -166,7 +166,8 @@ jobs:
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
- name: Run harness
|
- name: Run harness nightly
|
||||||
|
if: ${{github.event_name == 'schedule'}}
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||||
env:
|
env:
|
||||||
|
|
@ -185,6 +186,28 @@ jobs:
|
||||||
--device ${{ matrix.device }} \
|
--device ${{ matrix.device }} \
|
||||||
--tasks ${{ matrix.task }} \
|
--tasks ${{ matrix.task }} \
|
||||||
--batch_size 1 --no_cache --output_path results \
|
--batch_size 1 --no_cache --output_path results \
|
||||||
|
|
||||||
|
- name: Run harness pr
|
||||||
|
if: ${{github.event_name == 'pull_request'}}
|
||||||
|
shell: bash
|
||||||
|
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
|
||||||
|
env:
|
||||||
|
USE_XETLA: OFF
|
||||||
|
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
|
||||||
|
run: |
|
||||||
|
export HF_HOME=${HARNESS_HF_HOME}
|
||||||
|
export HF_DATASETS=$HARNESS_HF_HOME/datasets
|
||||||
|
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
|
||||||
|
python run_llb.py \
|
||||||
|
--model bigdl-llm \
|
||||||
|
--pretrained ${MODEL_PATH} \
|
||||||
|
--precision ${{ matrix.precision }} \
|
||||||
|
--device ${{ matrix.device }} \
|
||||||
|
--tasks ${{ matrix.task }} \
|
||||||
|
--batch_size 1 --no_cache --output_path results \
|
||||||
|
--limit 3 \
|
||||||
|
|
||||||
- uses: actions/upload-artifact@v3
|
- uses: actions/upload-artifact@v3
|
||||||
with:
|
with:
|
||||||
|
|
@ -226,7 +249,7 @@ jobs:
|
||||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py results
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py results
|
||||||
|
|
||||||
# TODO: change machine to store the results later
|
# TODO: change machine to store the results later
|
||||||
llm-harness-summary-nightly:
|
llm-harness-summary-html:
|
||||||
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
|
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
|
||||||
needs: [set-matrix, llm-harness-evaluation]
|
needs: [set-matrix, llm-harness-evaluation]
|
||||||
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
|
||||||
|
|
@ -267,6 +290,13 @@ jobs:
|
||||||
name: harness_results
|
name: harness_results
|
||||||
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
|
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
|
||||||
|
|
||||||
|
# Save fp16.csv in the parent folder of env.nightly_folder
|
||||||
|
- name: Download fp16.csv for summary
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/dev/benchmark/harness/fp16.csv -O ${{ env.NIGHTLY_FOLDER}}/../fp16.csv
|
||||||
|
ls ${{ env.NIGHTLY_FOLDER}}/..
|
||||||
|
|
||||||
- name: Summarize the results for nightly run
|
- name: Summarize the results for nightly run
|
||||||
if: github.event_name == 'schedule'
|
if: github.event_name == 'schedule'
|
||||||
shell: bash
|
shell: bash
|
||||||
|
|
@ -275,7 +305,7 @@ jobs:
|
||||||
pip install pandas==1.5.3
|
pip install pandas==1.5.3
|
||||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.NIGHTLY_FOLDER}}
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.NIGHTLY_FOLDER}}
|
||||||
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/harness_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
|
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/harness_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
|
||||||
|
|
||||||
- name: Summarize the results for pull request
|
- name: Summarize the results for pull request
|
||||||
if: github.event_name == 'pull_request'
|
if: github.event_name == 'pull_request'
|
||||||
shell: bash
|
shell: bash
|
||||||
|
|
|
||||||
|
|
@ -21,12 +21,14 @@ import sys
|
||||||
import argparse
|
import argparse
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
def highlight_vals(val, max=3.0, color1='red', color2='green'):
|
def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow'):
|
||||||
if isinstance(val, float):
|
if isinstance(val, float):
|
||||||
if val > max:
|
if val > max:
|
||||||
return 'background-color: %s' % color2
|
return 'background-color: %s' % color2
|
||||||
elif val <= -max:
|
elif val <= -max:
|
||||||
return 'background-color: %s' % color1
|
return 'background-color: %s' % color1
|
||||||
|
elif val != 0.0:
|
||||||
|
return 'background-color: %s' % color3
|
||||||
else:
|
else:
|
||||||
return ''
|
return ''
|
||||||
|
|
||||||
|
|
@ -80,7 +82,10 @@ def main():
|
||||||
help="the baseline path which stores the baseline.csv file")
|
help="the baseline path which stores the baseline.csv file")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
fp16_dict = create_fp16_dict('fp16.csv')
|
# fp16.csv is downloaded previously under the parent folder of the folder_path
|
||||||
|
parent_dir = os.path.dirname((args.folder_path))
|
||||||
|
fp16_path = os.path.join(parent_dir, 'fp16.csv')
|
||||||
|
fp16_dict = create_fp16_dict(fp16_path)
|
||||||
|
|
||||||
csv_files = []
|
csv_files = []
|
||||||
for file_name in os.listdir(args.folder_path):
|
for file_name in os.listdir(args.folder_path):
|
||||||
|
|
@ -157,11 +162,11 @@ def main():
|
||||||
previous_winogrande=previous_csv_row[Winogrande]
|
previous_winogrande=previous_csv_row[Winogrande]
|
||||||
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
|
if previous_arc > 0.0 and previous_truthfulqa > 0.0 and previous_winogrande > 0.0:
|
||||||
last_Arc[latest_csv_ind]=previous_arc
|
last_Arc[latest_csv_ind]=previous_arc
|
||||||
diff_Arc[latest_csv_ind]=round((previous_arc-latest_arc)*100/previous_arc,2)
|
diff_Arc[latest_csv_ind]=round((latest_arc-previous_arc)*100/previous_arc,2)
|
||||||
last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
|
last_TruthfulQA[latest_csv_ind]=previous_truthfulqa
|
||||||
diff_TruthfulQA[latest_csv_ind]=round((previous_truthfulqa-latest_truthfulqa)*100/previous_truthfulqa,2)
|
diff_TruthfulQA[latest_csv_ind]=round((latest_truthfulqa-previous_truthfulqa)*100/previous_truthfulqa,2)
|
||||||
last_Winogrande[latest_csv_ind]=previous_winogrande
|
last_Winogrande[latest_csv_ind]=previous_winogrande
|
||||||
diff_Winogrande[latest_csv_ind]=round((previous_winogrande-latest_winogrande)*100/previous_winogrande,2)
|
diff_Winogrande[latest_csv_ind]=round((latest_winogrande-previous_winogrande)*100/previous_winogrande,2)
|
||||||
in_previous_flag=True
|
in_previous_flag=True
|
||||||
|
|
||||||
if not in_previous_flag:
|
if not in_previous_flag:
|
||||||
|
|
@ -172,12 +177,12 @@ def main():
|
||||||
last_Winogrande[latest_csv_ind]=pd.NA
|
last_Winogrande[latest_csv_ind]=pd.NA
|
||||||
diff_Winogrande[latest_csv_ind]=pd.NA
|
diff_Winogrande[latest_csv_ind]=pd.NA
|
||||||
|
|
||||||
latest_csv.insert(loc=5,column='last_Arc',value=last_Arc)
|
latest_csv.insert(loc=6,column='last_Arc',value=last_Arc)
|
||||||
latest_csv.insert(loc=6,column='diff_Arc(%)',value=diff_Arc)
|
latest_csv.insert(loc=7,column='diff_Arc(%)',value=diff_Arc)
|
||||||
latest_csv.insert(loc=7,column='last_TruthfulQA',value=last_TruthfulQA)
|
latest_csv.insert(loc=8,column='last_TruthfulQA',value=last_TruthfulQA)
|
||||||
latest_csv.insert(loc=8,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
|
latest_csv.insert(loc=9,column='diff_TruthfulQA(%)',value=diff_TruthfulQA)
|
||||||
latest_csv.insert(loc=9,column='last_Winogrande',value=last_Winogrande)
|
latest_csv.insert(loc=10,column='last_Winogrande',value=last_Winogrande)
|
||||||
latest_csv.insert(loc=10,column='diff_Winogrande(%)',value=diff_Winogrande)
|
latest_csv.insert(loc=11,column='diff_Winogrande(%)',value=diff_Winogrande)
|
||||||
|
|
||||||
|
|
||||||
diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
|
diffs_within_normal_range = is_diffs_within_normal_range(diff_Arc, diff_TruthfulQA, diff_Winogrande, threshold=highlight_threshold)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue