* glm4 sdp

* fix style

* update comment
This commit is contained in:
Xin Qiu 2024-06-07 15:42:23 +08:00 committed by GitHub
parent 151fcf37bb
commit dbc3c2d72d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -22,6 +22,9 @@ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
import torch.nn.functional as F
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, apply_ipex_rotate_every_two
from ipex_llm.transformers.models.utils import use_sdp
from ipex_llm.transformers.models.chatglm2 import should_split_qkv_tensor
from ipex_llm.transformers.models.chatglm2 import split_tensor_along_last_dim
from transformers.modeling_outputs import BaseModelOutputWithPast
@ -31,32 +34,6 @@ KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH",
KV_CACHE_ALLOC_MIN_LENGTH = 512
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
def chatglm4_model_forward(
self,
input_ids,
@ -236,7 +213,7 @@ def chatglm4_attention_forward(
# apply relative positional encoding (rotary embedding)
if isinstance(rotary_pos_emb, tuple) and len(rotary_pos_emb) == 2:
# use_fuse_rope, see chatglm2_model_forward
# use_fuse_rope, see chatglm4_model_forward
cos, sin = rotary_pos_emb
rot_dim = cos.shape[-1]
query_layer = query_layer.transpose(1, 2)
@ -310,7 +287,7 @@ def chatglm4_attention_forward(
# core attention computation
# ==================================
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
context_layer = core_attn_forward(query_layer, key_layer, value_layer, attention_mask)
# =================
# Output. [sq, b, h]
@ -319,3 +296,57 @@ def chatglm4_attention_forward(
output = self.dense(context_layer)
return output, kv_cache
def core_attn_forward(query_layer, key_layer, value_layer, attention_mask):
L, S = query_layer.shape[2], key_layer.shape[2]
if attention_mask is None and L == S:
batch_size, n_head, seq_len, head_dim = query_layer.shape
if should_split_qkv_tensor(query_layer, batch_size, n_head, seq_len):
# split second dim to block size = 8
block_size = 8
query_split = torch.split(query_layer.to(key_layer.dtype), block_size, dim=1)
key_split = torch.split(key_layer, block_size, dim=1)
value_split = torch.split(value_layer, block_size, dim=1)
results = []
for q, k, v in zip(query_split, key_split, value_split):
result = F.scaled_dot_product_attention(q, k, v, is_causal=True).to(k.dtype)
results.append(result)
context_layer = torch.cat(results, dim=1)
else:
context_layer = F.scaled_dot_product_attention(query_layer.to(key_layer.dtype),
key_layer,
value_layer,
is_causal=True).to(key_layer.dtype)
else:
# attention_mask is not None only when past_key_value is not None and q_len > 1
if attention_mask is not None:
attn_bias = torch.zeros(attention_mask.shape, dtype=query_layer.dtype,
device=query_layer.device)
attention_mask = ~attention_mask
if attention_mask.dtype == torch.bool:
attn_bias.masked_fill_(attention_mask.logical_not(), float("-inf"))
else:
attn_bias += attention_mask
else:
attn_bias = None
if use_sdp(query_layer.shape[2], key_layer.shape[2],
query_layer.shape[-1], query_layer):
import xe_addons
attn_output = xe_addons.sdp(query_layer, key_layer, value_layer, attn_bias)
context_layer = attn_output.view(query_layer.shape)
else:
head_dim = query_layer.size(-1)
attn = torch.matmul(query_layer.to(key_layer.dtype),
key_layer.transpose(2, 3)) / math.sqrt(head_dim)
if attn_bias is not None:
attn += attn_bias
attn = F.softmax(attn, dim=-1,
dtype=torch.float32).to(value_layer.dtype)
context_layer = torch.matmul(attn, value_layer)
context_layer = context_layer.transpose(1, 2).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.reshape(*new_context_layer_shape)
return context_layer