Remove example page in mddocs (#11373)
This commit is contained in:
parent
c0e86c523a
commit
d9dd1b70bd
3 changed files with 0 additions and 143 deletions
|
@ -1,9 +0,0 @@
|
|||
IPEX-LLM Examples
|
||||
================================
|
||||
|
||||
You can use IPEX-LLM to run any PyTorch model with INT4 optimizations on Intel XPU (from Laptop to GPU to Cloud).
|
||||
|
||||
Here, we provide examples to help you quickly get started using IPEX-LLM to run some popular open-source models in the community. Please refer to the appropriate guide based on your device:
|
||||
|
||||
* `CPU <./examples_cpu.html>`_
|
||||
* `GPU <./examples_gpu.html>`_
|
|
@ -1,64 +0,0 @@
|
|||
# IPEX-LLM Examples: CPU
|
||||
|
||||
Here, we provide some examples on how you could apply IPEX-LLM INT4 optimizations on popular open-source models in the community.
|
||||
|
||||
To run these examples, please first refer to [here](./install_cpu.html) for more information about how to install ``ipex-llm``, requirements and best practices for setting up your environment.
|
||||
|
||||
The following models have been verified on either servers or laptops with Intel CPUs.
|
||||
|
||||
## Example of PyTorch API
|
||||
|
||||
| Model | Example of PyTorch API |
|
||||
|------------|-------------------------------------------------------|
|
||||
| LLaMA 2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/llama2) |
|
||||
| ChatGLM | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/chatglm) |
|
||||
| Mistral | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/mistral) |
|
||||
| Bark | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/bark) |
|
||||
| BERT | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/bert) |
|
||||
| Openai Whisper | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/openai-whisper) |
|
||||
|
||||
```eval_rst
|
||||
.. important::
|
||||
|
||||
In addition to INT4 optimization, IPEX-LLM also provides other low bit optimizations (such as INT8, INT5, NF4, etc.). You may apply other low bit optimizations through PyTorch API as `example <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/More-Data-Types>`_.
|
||||
```
|
||||
|
||||
|
||||
## Example of `transformers`-style API
|
||||
|
||||
| Model | Example of `transformers`-style API |
|
||||
|------------|-------------------------------------------------------|
|
||||
| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models), [link2](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |
|
||||
| LLaMA 2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/llama2) | [link1](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models), [link2](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) |
|
||||
| ChatGLM | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/PyTorch-Models/Model/chatglm) | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) |
|
||||
| ChatGLM2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
||||
| Mistral | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral) |
|
||||
| Falcon | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon) |
|
||||
| MPT | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt) |
|
||||
| Dolly-v1 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v1) |
|
||||
| Dolly-v2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v2) |
|
||||
| Replit Code| [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/replit) |
|
||||
| RedPajama | [link1](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models), [link2](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/redpajama) |
|
||||
| Phoenix | [link1](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models), [link2](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/phoenix) |
|
||||
| StarCoder | [link1](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/Native-Models), [link2](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/starcoder) |
|
||||
| Baichuan | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) |
|
||||
| Baichuan2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) |
|
||||
| InternLM | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) |
|
||||
| Qwen | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) |
|
||||
| Aquila | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) |
|
||||
| MOSS | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss) |
|
||||
| Whisper | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/whisper) |
|
||||
|
||||
```eval_rst
|
||||
.. important::
|
||||
|
||||
In addition to INT4 optimization, IPEX-LLM also provides other low bit optimizations (such as INT8, INT5, NF4, etc.). You may apply other low bit optimizations through ``transformers``-style API as `example <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/More-Data-Types>`_.
|
||||
```
|
||||
|
||||
|
||||
```eval_rst
|
||||
.. seealso::
|
||||
|
||||
See the complete examples `here <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU>`_.
|
||||
```
|
||||
|
|
@ -1,70 +0,0 @@
|
|||
# IPEX-LLM Examples: GPU
|
||||
|
||||
Here, we provide some examples on how you could apply IPEX-LLM INT4 optimizations on popular open-source models in the community.
|
||||
|
||||
To run these examples, please first refer to [here](./install_gpu.html) for more information about how to install ``ipex-llm``, requirements and best practices for setting up your environment.
|
||||
|
||||
```eval_rst
|
||||
.. important::
|
||||
|
||||
Only Linux system is supported now, Ubuntu 22.04 is prefered.
|
||||
```
|
||||
|
||||
The following models have been verified on either servers or laptops with Intel GPUs.
|
||||
|
||||
## Example of PyTorch API
|
||||
|
||||
| Model | Example of PyTorch API |
|
||||
|------------|-------------------------------------------------------|
|
||||
| LLaMA 2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/llama2) |
|
||||
| ChatGLM 2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/chatglm2) |
|
||||
| Mistral | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/mistral) |
|
||||
| Baichuan | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/baichuan) |
|
||||
| Baichuan2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/baichuan2) |
|
||||
| Replit | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/replit) |
|
||||
| StarCoder | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/starcoder) |
|
||||
| Dolly-v1 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/dolly-v1) |
|
||||
| Dolly-v2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/Model/dolly-v2) |
|
||||
|
||||
```eval_rst
|
||||
.. important::
|
||||
|
||||
In addition to INT4 optimization, IPEX-LLM also provides other low bit optimizations (such as INT8, INT5, NF4, etc.). You may apply other low bit optimizations through PyTorch API as `example <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/PyTorch-Models/More-Data-Types>`_.
|
||||
```
|
||||
|
||||
|
||||
## Example of `transformers`-style API
|
||||
|
||||
| Model | Example of `transformers`-style API |
|
||||
|------------|-------------------------------------------------------|
|
||||
| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* |[link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/vicuna)|
|
||||
| LLaMA 2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/llama2) |
|
||||
| ChatGLM2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/chatglm2) |
|
||||
| Mistral | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mistral) |
|
||||
| Falcon | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/falcon) |
|
||||
| MPT | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt) |
|
||||
| Dolly-v1 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v1) |
|
||||
| Dolly-v2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v2) |
|
||||
| Replit | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/replit) |
|
||||
| StarCoder | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/starcoder) |
|
||||
| Baichuan | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) |
|
||||
| Baichuan2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/baichuan2) |
|
||||
| InternLM | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm) |
|
||||
| Qwen | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen) |
|
||||
| Aquila | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila) |
|
||||
| Whisper | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/whisper) |
|
||||
| Chinese Llama2 | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/chinese-llama2) |
|
||||
| GPT-J | [link](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/gpt-j) |
|
||||
|
||||
```eval_rst
|
||||
.. important::
|
||||
|
||||
In addition to INT4 optimization, IPEX-LLM also provides other low bit optimizations (such as INT8, INT5, NF4, etc.). You may apply other low bit optimizations through ``transformers``-style API as `example <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types>`_.
|
||||
```
|
||||
|
||||
|
||||
```eval_rst
|
||||
.. seealso::
|
||||
|
||||
See the complete examples `here <https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU>`_.
|
||||
```
|
Loading…
Reference in a new issue