[NPU] Llama3, Qwen2 1.5b, MiniCPM 1/2B groupwise support (#12327)

* support minicpm 1b & qwen 1.5b gw

* support minicpm 1b

* support minicpm 2b

* fix style & error

* fix style & update

* remove print
This commit is contained in:
Yina Chen 2024-11-05 09:51:31 +02:00 committed by GitHub
parent 82a61b5cf3
commit d872639395
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 239 additions and 68 deletions

View file

@ -47,6 +47,7 @@ if __name__ == "__main__":
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--quantization_group_size", type=int, default=0)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--disable-streaming", action="store_true", default=False)
@ -61,6 +62,7 @@ if __name__ == "__main__":
max_prompt_len=args.max_prompt_len,
torch_dtype=torch.float16,
attn_implementation="eager",
quantization_group_size=args.quantization_group_size,
transpose_value_cache=not args.disable_transpose_value_cache,
trust_remote_code=True)
else:

View file

@ -76,13 +76,19 @@ def split_linears(module: torch.nn.Module, n_splits_hidden_size=2, n_splits_down
from transformers.models.llama.modeling_llama import LlamaMLP, LlamaAttention
attn_module_names = ["q_proj", "k_proj", "v_proj", "o_proj"]
mlp_module_names = ["down_proj", "up_proj", "gate_proj"]
if isinstance(module, (Qwen2Attention, LlamaAttention)):
if (
isinstance(module, (Qwen2Attention, LlamaAttention))
or module.__class__.__name__ in ['MiniCPMAttention', 'Attention']
):
for name in attn_module_names:
setattr(module, f"{name}_dq_list", split_linear(getattr(module, name), name,
n_splits=n_splits_hidden_size,
load=load))
delattr(module, name)
elif isinstance(module, (Qwen2MLP, LlamaMLP)):
elif (
isinstance(module, (Qwen2MLP, LlamaMLP))
or module.__class__.__name__ in ['MiniCPMMLP', 'MLP']
):
for name in mlp_module_names:
n_splits_mlp = n_splits_hidden_size
if name == 'down_proj':

View file

@ -87,9 +87,8 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
model.llm.config.model_type = "llama"
model = model.llm
if model.config.model_type in ["qwen2", "llama"]:
if model.config.model_type in ["qwen2", "llama", "minicpm"]:
from ipex_llm.transformers.npu_models.common import split_linears
if quantization_group_size == 0:
n_splits_linear = 1
n_splits_down_proj = 2 if model.config.intermediate_size == 18944 else 1
@ -110,10 +109,21 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
if quantization_group_size != 0:
split_num = model.config.hidden_size // quantization_group_size
new_lm_head = SlicedLMHead(model.lm_head.weight, split_num=split_num,
bias=model.lm_head.bias, use_split=True)
del model.lm_head
model.lm_head = new_lm_head
if model.config.model_type == "minicpm" and model.config.num_hidden_layers == 40:
# workaround for MiniCPM-2B
new_lm_head_0 = SlicedLMHead(model.lm_head_0.weight, split_num=split_num,
bias=model.lm_head_0.bias, use_split=True)
del model.lm_head_0
model.lm_head_0 = new_lm_head_0
new_lm_head_1 = SlicedLMHead(model.lm_head_1.weight, split_num=split_num,
bias=model.lm_head_1.bias, use_split=True)
del model.lm_head_1
model.lm_head_1 = new_lm_head_1
else:
new_lm_head = SlicedLMHead(model.lm_head.weight, split_num=split_num,
bias=model.lm_head.bias, use_split=True)
del model.lm_head
model.lm_head = new_lm_head
if model.config.model_type == "qwen2":
# for Qwen2-7B-Insturct, divide lm_head into 14 parts
@ -372,6 +382,10 @@ def optimize_llm(
transpose_value_cache=transpose_value_cache)
if hasattr(model, 'lm_head') and isinstance(model.lm_head, SlicedLMHead):
model.lm_head.get_fused_lm_head()
# MiniCPM-2b
if hasattr(model, "lm_head_1") and isinstance(model.lm_head_1, SlicedLMHead):
model.lm_head_1.get_fused_lm_head()
model.lm_head_0.get_fused_lm_head()
def optimize_funasr(

View file

@ -110,8 +110,8 @@ class LowBitLlamaMultiDecoderlayer(LLMBaseNNFactory):
# define input, the order self.parameter matters
input = self.create_input_op((self.batch_size, self.seq_len, self.hidden_size))
# llama2 use ov sdp, other models need to test
use_prefill_sdp = self.intermediate_size == 11008
# llama2/3 use ov sdp, other models need to test
use_prefill_sdp = self.intermediate_size in [11008, 14336]
# Self Attention
if mode == "decode":
@ -437,7 +437,7 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
self.use_prefill_sdp = intermediate_size == 11008
self.use_prefill_sdp = intermediate_size in [11008, 14336]
def forward(
self,

View file

@ -78,13 +78,19 @@ class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
rms_norm_eps,
intermediate_size,
scale_depth,
num_hidden_layers
num_hidden_layers,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
dtype=dtype,
profile=profile,
device=device)
device=device,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
@ -235,7 +241,7 @@ class LowBitMinicpmMultiDecoderlayer(LLMBaseNNFactory):
attn_output * layer_scale_depth)
residual = hidden_states
hidden_states = self.layer_norm(hidden_states, post_attention_layernorm_weight)
hidden_states = self.mlp(hidden_states)
hidden_states = self.mlp(hidden_states, self.seq_len, self.mode)
hidden_states = self.eltwise_add(residual,
hidden_states * layer_scale_depth)
hidden_states = self.convert_to_fp16(hidden_states)
@ -264,6 +270,9 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
max_seq_len: int = 1024,
transpose_value: bool = False,
do_print: bool = False,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
):
super().__init__()
@ -273,6 +282,10 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
for w in parameters:
if isinstance(w, tuple): # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy()))
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
op_parameters.append(w.numpy())
elif isinstance(w, np.ndarray): # scale
op_parameters.append(w)
else:
op_parameters.append(w.to(torch.float16).numpy())
self.op_parameters = op_parameters
@ -281,6 +294,10 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
self.transpose_value = transpose_value
if isinstance(parameters[0], tuple):
np_dtype = np.int8 if parameters[0][0].dtype == torch.int8 else np.uint8
elif parameters[0].dtype == torch.int8:
np_dtype = np.int8
elif parameters[0].dtype == torch.uint8:
np_dtype = np.uint8
else: # FP16 Linear
np_dtype = np.float16
@ -317,6 +334,9 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
mode="decode",
transpose_value=self.transpose_value,
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
)
self.backend_decoders.append(decoder)
@ -392,6 +412,9 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
num_hidden_layers,
max_seq_len: int = 128,
transpose_value: bool = False,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
):
super().__init__()
self.op_parameters = parameters
@ -422,6 +445,9 @@ class FusedLlamaLowBitDecoderlayer(torch.nn.Module):
mode="prefill",
transpose_value=self.transpose_value,
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
@ -501,24 +527,53 @@ def run_decode(
rms_norm_eps = model.config.rms_norm_eps
intermediate_size = model.config.intermediate_size
num_hidden_layers = model.config.num_hidden_layers
group_size = getattr(model.config, "group_size", 0)
layer_weights = []
input_layer_norm_weights = []
post_attn_layernorm_weights = []
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
mlp_layer = curr_layer.mlp
weights = [
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
]
weights = []
if n_splits_linear == 1:
for q, k, v, o, g, u in zip(attn_layer.q_proj_dq_list,
attn_layer.k_proj_dq_list,
attn_layer.v_proj_dq_list,
attn_layer.o_proj_dq_list,
mlp_layer.gate_proj_dq_list,
mlp_layer.up_proj_dq_list):
weights.append((q.weight, q.scale))
weights.append((k.weight, k.scale))
weights.append((v.weight, v.scale))
weights.append((o.weight, o.scale))
weights.append((g.weight, g.scale))
weights.append((u.weight, u.scale))
else:
for layer_list in [attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
attn_layer.v_proj_dq_list, attn_layer.o_proj_dq_list,
mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list]:
l_weights = []
scales = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if n_splits_down_proj == 1:
for l in mlp_layer.down_proj_dq_list:
weights.append((l.weight, l.scale))
else:
l_weights = []
scales = []
for l in mlp_layer.down_proj_dq_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -547,6 +602,9 @@ def run_decode(
max_seq_len=max_seq_len,
transpose_value=transpose_value_cache,
do_print=False,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
)
dist.barrier()
@ -711,25 +769,55 @@ def run_prefill(
intermediate_size = model.config.intermediate_size
scale_depth = model.config.scale_depth
num_hidden_layers = model.config.num_hidden_layers
group_size = getattr(model.config, "group_size", 0)
deocderlayers = []
layer_weights = []
input_layer_norm_weights = []
post_attn_layernorm_weights = []
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
mlp_layer = curr_layer.mlp
weights = [
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
]
weights = []
if n_splits_linear == 1:
for q, k, v, o, g, u in zip(attn_layer.q_proj_dq_list,
attn_layer.k_proj_dq_list,
attn_layer.v_proj_dq_list,
attn_layer.o_proj_dq_list,
mlp_layer.gate_proj_dq_list,
mlp_layer.up_proj_dq_list):
weights.append((q.weight, q.scale))
weights.append((k.weight, k.scale))
weights.append((v.weight, v.scale))
weights.append((o.weight, o.scale))
weights.append((g.weight, g.scale))
weights.append((u.weight, u.scale))
else:
for layer_list in [attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
attn_layer.v_proj_dq_list, attn_layer.o_proj_dq_list,
mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list]:
l_weights = []
scales = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if n_splits_down_proj == 1:
for l in mlp_layer.down_proj_dq_list:
weights.append((l.weight, l.scale))
else:
l_weights = []
scales = []
for l in mlp_layer.down_proj_dq_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -752,6 +840,9 @@ def run_prefill(
num_hidden_layers=num_hidden_layers,
max_seq_len=max_output_len,
transpose_value=transpose_value_cache,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
)
layer_weights.extend(weights)

View file

@ -273,7 +273,6 @@ class LLMBaseNNFactory(NNFactory):
self.n_splits_linear, wt_dtype=self.dtype,
scale_factor=(self.group_size == 0),
is_prefill=(mode == "prefill"))
return attn_output, new_key_states, new_value_states
def paraformer_layer_norm(self, hidden_states, layernorm_weight, layernorm_bias):

View file

@ -370,6 +370,9 @@ def convert_llm(model: torch.nn.Module,
if hasattr(model, "lm_head") and isinstance(model.lm_head, SlicedLMHead):
model.lm_head.get_fused_lm_head()
if hasattr(model, "lm_head_1") and isinstance(model.lm_head_1, SlicedLMHead):
model.lm_head_1.get_fused_lm_head()
model.lm_head_0.get_fused_lm_head()
# patch generate function
import types

View file

@ -81,6 +81,7 @@ class MiniCPMLMHead(LLMBaseNNFactory):
transpose_value: bool = False,
profile: bool = False,
device: str = "NPU",
n_splits: int = 1,
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
@ -108,19 +109,37 @@ class MiniCPMLMHead(LLMBaseNNFactory):
hidden_states = self.layer_norm(hidden_states, model_norm_weight)
if vocab_size == 122753:
# for MiniCPM-2B-sft-bf16
hidden_states_1 = self.linear(
hidden_states, 73440, self.hidden_size, bias=False, wt_dtype=self.dtype
)
hidden_states_2 = self.linear(
hidden_states, 73440, self.hidden_size, bias=False, wt_dtype=self.dtype
)
if n_splits == 1:
hidden_states_1 = self.linear(
hidden_states, 73440, self.hidden_size, bias=False, wt_dtype=self.dtype
)
hidden_states_2 = self.linear(
hidden_states, 73440, self.hidden_size, bias=False, wt_dtype=self.dtype
)
else:
hidden_states_1 = self.dq_split_linear(
hidden_states, 73440, self.hidden_size,
n_splits=n_splits, wt_dtype=dtype, scale_factor=False
)
hidden_states_2 = self.dq_split_linear(
hidden_states, 73440, self.hidden_size,
n_splits=n_splits, wt_dtype=dtype, scale_factor=False
)
hidden_states_2 = self.slice(hidden_states_2, begin=[0, 0, 0], end=[1, 1, 49313])
hidden_states = self.concat(hidden_states_1, hidden_states_2, axis=2)
else:
# for MiniCPM-1B-sft-bf16
hidden_states = self.linear(
hidden_states, self.vocab_size, self.hidden_size, bias=False, wt_dtype=self.dtype
)
if n_splits == 1:
hidden_states = self.linear(
hidden_states, self.vocab_size, self.hidden_size, bias=False,
wt_dtype=self.dtype
)
else:
hidden_states = self.dq_split_linear(
hidden_states, self.vocab_size, self.hidden_size,
n_splits=n_splits, wt_dtype=dtype, scale_factor=False
)
# define outputs
hidden_states = self.convert_to_fp32(hidden_states)
@ -145,8 +164,19 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
# for MiniCPM-1B-sft-bf16
weights = [(model.lm_head.weight, model.lm_head.scale)]
else:
# TODO
pass
weights = []
if vocab_size == 122753:
lm_head_list = [model.lm_head_0.lm_heads, model.lm_head_1.lm_heads]
else:
lm_head_list = [model.lm_head.lm_heads]
for lh in lm_head_list:
lm_head_weights = []
scales = []
for l in lh:
lm_head_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0)))
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
@ -162,6 +192,7 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
dtype=np_dtype,
model_norm_weight=model_norm.weight.to(torch.float16),
vocab_size=vocab_size,
n_splits=n_splits_linear
)
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir)
@ -175,8 +206,9 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
else:
weight_numpy = [model.lm_head.weight.data.numpy(), model.lm_head.scale.data.numpy(), ]
else:
# TODO
pass
weight_numpy = [v.numpy() for v in weights[0]]
if vocab_size == 122753:
weight_numpy.extend([v.numpy() for v in weights[1]])
for idx, weight in enumerate(weight_numpy):
bin_file = os.path.join(weight_dir, f"model_lm_head_input_{1+idx}.bin")
@ -214,18 +246,40 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
weights = []
if n_splits_linear == 1:
weights = [
(attn_layer.q_proj.weight, attn_layer.q_proj.scale),
(attn_layer.k_proj.weight, attn_layer.k_proj.scale),
(attn_layer.v_proj.weight, attn_layer.v_proj.scale),
(attn_layer.o_proj.weight, attn_layer.o_proj.scale),
(mlp_layer.gate_proj.weight, mlp_layer.gate_proj.scale),
(mlp_layer.up_proj.weight, mlp_layer.up_proj.scale),
(mlp_layer.down_proj.weight, mlp_layer.down_proj.scale),
]
for q, k, v, o, g, u in zip(attn_layer.q_proj_dq_list,
attn_layer.k_proj_dq_list,
attn_layer.v_proj_dq_list,
attn_layer.o_proj_dq_list,
mlp_layer.gate_proj_dq_list,
mlp_layer.up_proj_dq_list):
weights.append((q.weight, q.scale))
weights.append((k.weight, k.scale))
weights.append((v.weight, v.scale))
weights.append((o.weight, o.scale))
weights.append((g.weight, g.scale))
weights.append((u.weight, u.scale))
else:
# TODO
pass
for layer_list in [attn_layer.q_proj_dq_list, attn_layer.k_proj_dq_list,
attn_layer.v_proj_dq_list, attn_layer.o_proj_dq_list,
mlp_layer.gate_proj_dq_list, mlp_layer.up_proj_dq_list]:
l_weights = []
scales = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0),
torch.stack(scales, axis=0)))
if n_splits_down_proj == 1:
for l in mlp_layer.down_proj_dq_list:
weights.append((l.weight, l.scale))
else:
l_weights = []
scales = []
for l in mlp_layer.down_proj_dq_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
cached_sin = curr_layer.self_attn.rotary_emb.sin_cached.to(torch.float16)
@ -254,6 +308,9 @@ def convert_minicpm_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
mode="decode",
transpose_value=transpose_value_cache,
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
)
rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
f"decoder_layer_{layer_idx}",

View file

@ -19,6 +19,7 @@ import torch
import numpy as np
import os
from .common import update_names_of_IR_and_export_blob, LLMEmbedding, LowBitLLMLMHead
from ipex_llm.transformers.npu_models.lm_head import SlicedLMHead
def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
@ -27,18 +28,16 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
rms_norm_eps = model.config.rms_norm_eps
vocab_size = model.config.vocab_size
model_norm = model.model.norm
if model.config.intermediate_size == 18944:
lm_heads = model.lm_head.lm_heads # Qwen2-7B is always SlicedLMHead
else:
lm_heads = [model.lm_head]
if n_splits_linear == 1:
weights = [(lm_heads[0].weight, lm_heads[0].scale)]
lm_head = model.lm_head
if not isinstance(lm_head, SlicedLMHead):
weights = [(lm_head.weight, lm_head.scale)]
else:
lm_heads = lm_head.lm_heads
lm_head_weights = []
scales = []
for i in range(n_splits_linear):
lm_head_weights.append(lm_heads[i].weight)
scales.append(lm_heads[i].scale)
for l in lm_heads:
lm_head_weights.append(l.weight)
scales.append(l.scale)
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0))]
if isinstance(weights[0], tuple):
@ -61,9 +60,9 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir):
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir)
# save weights bins files
if n_splits_linear == 1:
if not isinstance(lm_head, SlicedLMHead):
weight_numpy = [
lm_heads[0].weight.data.numpy(), lm_heads[0].scale.data.numpy(),
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
]
else:
weight_numpy = [v.numpy() for v in weights[0]]