Remove native_int4 in LangChain examples (#10510)
* rebase the modify to ipex-llm * modify the typo
This commit is contained in:
parent
924e01b842
commit
d86477f14d
12 changed files with 1 additions and 467 deletions
|
|
@ -66,8 +66,3 @@ python transformers_int4/voiceassistant.py -m <path_to_model> [-q <your_question
|
|||
- `-x MAX_NEW_TOKENS`: the max new tokens of model tokens input
|
||||
- `-l LANGUAGE`: you can specify a language such as "english" or "chinese"
|
||||
- `-d True|False`: whether the model path specified in -m is saved low bit model.
|
||||
|
||||
|
||||
### Legacy (Native INT4 examples)
|
||||
|
||||
IPEX also provides langchain integrations using native INT4 mode. Those examples can be foud in [native_int4](./native_int4/) folder. For detailed instructions of settting up and running `native_int4` examples, refer to [Native INT4 Examples README](./README_nativeint4.md).
|
||||
|
|
|
|||
|
|
@ -1,128 +0,0 @@
|
|||
# Langchain Native INT4 examples
|
||||
|
||||
The examples in [native_int4](./native_int4) folder show how to use langchain with `ipex-llm` native INT4 mode.
|
||||
|
||||
## Install ipex-llm
|
||||
Follow the instructions in [Install](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm#install).
|
||||
|
||||
## Install Required Dependencies for langchain examples.
|
||||
|
||||
```bash
|
||||
pip install langchain==0.0.184
|
||||
pip install -U chromadb==0.3.25
|
||||
pip install -U pandas==2.0.3
|
||||
```
|
||||
|
||||
|
||||
## Convert Models using ipex-llm
|
||||
Follow the instructions in [Convert model](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm#convert-model).
|
||||
|
||||
|
||||
## Run the examples
|
||||
|
||||
### 1. Streaming Chat
|
||||
|
||||
```bash
|
||||
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
|
||||
```
|
||||
arguments info:
|
||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||
|
||||
### 2. Question Answering over Docs
|
||||
```bash
|
||||
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
|
||||
```
|
||||
arguments info:
|
||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
|
||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||
- `-i DOC_PATH`: **required**, path to the input document
|
||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
|
||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||
|
||||
### 3. Voice Assistant
|
||||
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
|
||||
|
||||
Some extra dependencies are required to be installed for this example.
|
||||
```bash
|
||||
pip install SpeechRecognition
|
||||
pip install pyttsx3
|
||||
pip install PyAudio
|
||||
pip install whisper.ai
|
||||
pip install soundfile
|
||||
```
|
||||
|
||||
```bash
|
||||
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
|
||||
```
|
||||
|
||||
arguments info:
|
||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
|
||||
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
|
||||
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
|
||||
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
|
||||
|
||||
When you see output says
|
||||
> listening now...
|
||||
|
||||
Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them.
|
||||
|
||||
#### Known Issues
|
||||
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
|
||||
```python
|
||||
import pyaudio
|
||||
import speech_recognition as sr
|
||||
|
||||
CHUNK = 1024
|
||||
FORMAT = pyaudio.paInt16
|
||||
CHANNELS = 1 # The desired number of input channels
|
||||
RATE = 16000 # The desired rate (in Hz)
|
||||
RECORD_SECONDS = 10 # Recording time (in second)
|
||||
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
|
||||
p = pyaudio.PyAudio()
|
||||
|
||||
stream = p.open(format=FORMAT,
|
||||
channels=CHANNELS,
|
||||
rate=RATE,
|
||||
input=True,
|
||||
frames_per_buffer=CHUNK)
|
||||
|
||||
print("*"*10, "Listening\n")
|
||||
frames = []
|
||||
data =0
|
||||
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
||||
data = stream.read(CHUNK) ## <class 'bytes'> ,exception_on_overflow = False
|
||||
frames.append(data) ## <class 'list'>
|
||||
print("*"*10, "Stop recording\n")
|
||||
|
||||
stream.stop_stream()
|
||||
stream.close()
|
||||
p.terminate()
|
||||
|
||||
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
|
||||
wf.setnchannels(CHANNELS)
|
||||
wf.setsampwidth(p.get_sample_size(FORMAT))
|
||||
wf.setframerate(RATE)
|
||||
wf.writeframes(b''.join(frames))
|
||||
wf.close()
|
||||
|
||||
r = sr.Recognizer()
|
||||
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
|
||||
audio = r.record(source1) # read the entire audio file
|
||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
```
|
||||
|
||||
### 4. Math
|
||||
|
||||
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
|
||||
|
||||
```bash
|
||||
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
|
||||
```
|
||||
arguments info:
|
||||
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
|
||||
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.
|
||||
|
||||
|
|
@ -1,110 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
|
||||
|
||||
import argparse
|
||||
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
|
||||
QA_PROMPT)
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain.chains.question_answering import load_qa_chain
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
|
||||
from ipex_llm.langchain.llms import *
|
||||
from ipex_llm.langchain.embeddings import *
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
input_path = args.input_path
|
||||
model_path = args.model_path
|
||||
model_family = args.model_family
|
||||
query = args.question
|
||||
n_ctx = args.n_ctx
|
||||
n_threads=args.thread_num
|
||||
|
||||
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
||||
|
||||
# split texts of input doc
|
||||
with open(input_path) as f:
|
||||
input_doc = f.read()
|
||||
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||
texts = text_splitter.split_text(input_doc)
|
||||
|
||||
model_family_to_embeddings = {
|
||||
"llama": LlamaEmbeddings,
|
||||
"gptneox": GptneoxEmbeddings,
|
||||
"bloom": BloomEmbeddings,
|
||||
"starcoder": StarcoderEmbeddings
|
||||
}
|
||||
|
||||
model_family_to_llm = {
|
||||
"llama": LlamaLLM,
|
||||
"gptneox": GptneoxLLM,
|
||||
"bloom": BloomLLM,
|
||||
"starcoder": StarcoderLLM
|
||||
}
|
||||
|
||||
if model_family in model_family_to_embeddings and model_family in model_family_to_llm:
|
||||
llm_embeddings = model_family_to_embeddings[model_family]
|
||||
langchain_llm = model_family_to_llm[model_family]
|
||||
else:
|
||||
raise ValueError(f"Unknown model family: {model_family}")
|
||||
|
||||
# create embeddings and store into vectordb
|
||||
embeddings = llm_embeddings(model_path=model_path, n_threads=n_threads, n_ctx=n_ctx)
|
||||
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
|
||||
|
||||
# get relavant texts
|
||||
docs = docsearch.get_relevant_documents(query)
|
||||
|
||||
bigdl_llm = langchain_llm(
|
||||
model_path=model_path, n_ctx=n_ctx, n_threads=n_threads, callback_manager=callback_manager
|
||||
)
|
||||
|
||||
doc_chain = load_qa_chain(
|
||||
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=callback_manager
|
||||
)
|
||||
|
||||
doc_chain.run(input_documents=docs, question=query)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain QA over Docs Example')
|
||||
parser.add_argument('-x','--model-family', type=str, required=True,
|
||||
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
|
||||
help='the model family')
|
||||
parser.add_argument('-m','--model-path', type=str, required=True,
|
||||
help='the path to the converted llm model')
|
||||
parser.add_argument('-i', '--input-path', type=str, required=True,
|
||||
help='the path to the input doc.')
|
||||
parser.add_argument('-q', '--question', type=str, default='What is AI?',
|
||||
help='qustion you want to ask.')
|
||||
parser.add_argument('-c','--n-ctx', type=int, default=2048,
|
||||
help='the maximum context size')
|
||||
parser.add_argument('-t','--thread-num', type=int, default=2,
|
||||
help='number of threads to use for inference')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
|
|
@ -1,82 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
import argparse
|
||||
|
||||
from ipex_llm.langchain.llms import *
|
||||
from langchain import PromptTemplate, LLMChain
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
|
||||
|
||||
def main(args):
|
||||
|
||||
question = args.question
|
||||
model_path = args.model_path
|
||||
model_family = args.model_family
|
||||
n_threads = args.thread_num
|
||||
template ="""{question}"""
|
||||
|
||||
prompt = PromptTemplate(template=template, input_variables=["question"])
|
||||
|
||||
# Callbacks support token-wise streaming
|
||||
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
||||
|
||||
model_family_to_llm = {
|
||||
"llama": LlamaLLM,
|
||||
"gptneox": GptneoxLLM,
|
||||
"bloom": BloomLLM,
|
||||
"starcoder": StarcoderLLM,
|
||||
"chatglm": ChatGLMLLM
|
||||
}
|
||||
|
||||
if model_family in model_family_to_llm:
|
||||
langchain_llm = model_family_to_llm[model_family]
|
||||
else:
|
||||
raise ValueError(f"Unknown model family: {model_family}")
|
||||
|
||||
# Verbose is required to pass to the callback manager
|
||||
llm = langchain_llm(
|
||||
model_path=model_path,
|
||||
n_threads=n_threads,
|
||||
callback_manager=callback_manager,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
||||
|
||||
llm_chain.run(question)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain Streaming Chat Example')
|
||||
parser.add_argument('-x','--model-family', type=str, required=True,
|
||||
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
|
||||
help='the model family')
|
||||
parser.add_argument('-m','--model-path', type=str, required=True,
|
||||
help='the path to the converted llm model')
|
||||
parser.add_argument('-q', '--question', type=str, default='What is AI?',
|
||||
help='qustion you want to ask.')
|
||||
parser.add_argument('-t','--thread-num', type=int, default=2,
|
||||
help='Number of threads to use for inference')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
|
|
@ -1,141 +0,0 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
# This would makes sure Python is aware there is more than one sub-package within bigdl,
|
||||
# physically located elsewhere.
|
||||
# Otherwise there would be module not found error in non-pip's setting as Python would
|
||||
# only search the first bigdl package and end up finding only one sub-package.
|
||||
|
||||
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
|
||||
|
||||
|
||||
from langchain import LLMChain, PromptTemplate
|
||||
from ipex_llm.langchain.llms import *
|
||||
from langchain.memory import ConversationBufferWindowMemory
|
||||
from langchain.callbacks.manager import CallbackManager
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
import speech_recognition as sr
|
||||
import pyttsx3
|
||||
import argparse
|
||||
|
||||
|
||||
def prepare_chain(args):
|
||||
|
||||
model_path = args.model_path
|
||||
model_family = args.model_family
|
||||
n_threads = args.thread_num
|
||||
n_ctx = args.context_size
|
||||
|
||||
# Use a easy prompt could bring good-enough result
|
||||
# You could tune the prompt based on your own model to perform better
|
||||
template = """
|
||||
{history}
|
||||
|
||||
Q: {human_input}
|
||||
A:"""
|
||||
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
|
||||
|
||||
# We use our BigDLCausalLLM to subsititute OpenAI web-required API
|
||||
model_family_to_llm = {
|
||||
"llama": LlamaLLM,
|
||||
"gptneox": GptneoxLLM,
|
||||
"bloom": BloomLLM,
|
||||
"starcoder": StarcoderLLM,
|
||||
"chatglm": ChatGLMLLM
|
||||
}
|
||||
|
||||
if model_family in model_family_to_llm:
|
||||
langchain_llm = model_family_to_llm[model_family]
|
||||
else:
|
||||
raise ValueError(f"Unknown model family: {model_family}")
|
||||
|
||||
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
||||
llm = langchain_llm(
|
||||
model_path=model_path,
|
||||
n_threads=n_threads,
|
||||
callback_manager=callback_manager,
|
||||
verbose=True,
|
||||
n_ctx=n_ctx,
|
||||
stop=['\n\n'] # You could tune the stop words based on your own model to perform better
|
||||
)
|
||||
|
||||
# Following code are complete the same as the use-case
|
||||
voiceassitant_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
verbose=True,
|
||||
memory=ConversationBufferWindowMemory(k=2),
|
||||
)
|
||||
|
||||
return voiceassitant_chain
|
||||
|
||||
|
||||
def listen(voiceassitant_chain):
|
||||
engine = pyttsx3.init()
|
||||
r = sr.Recognizer()
|
||||
with sr.Microphone() as source:
|
||||
print("Calibrating...")
|
||||
r.adjust_for_ambient_noise(source, duration=5)
|
||||
# optional parameters to adjust microphone sensitivity
|
||||
# r.energy_threshold = 200
|
||||
# r.pause_threshold=0.5
|
||||
|
||||
print("Okay, go!")
|
||||
while 1:
|
||||
text = ""
|
||||
print("listening now...")
|
||||
try:
|
||||
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
||||
print("Recognizing...")
|
||||
# whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages
|
||||
# other speech recognition models are also available.
|
||||
text = r.recognize_whisper(
|
||||
audio,
|
||||
model="medium.en",
|
||||
show_dict=True,
|
||||
)["text"]
|
||||
except Exception as e:
|
||||
unrecognized_speech_text = (
|
||||
f"Sorry, I didn't catch that. Exception was: {e}s"
|
||||
)
|
||||
text = unrecognized_speech_text
|
||||
print(text)
|
||||
|
||||
response_text = voiceassitant_chain.predict(human_input=text)
|
||||
print(response_text)
|
||||
engine.say(response_text)
|
||||
engine.runAndWait()
|
||||
|
||||
|
||||
def main(args):
|
||||
chain = prepare_chain(args)
|
||||
listen(chain)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain Voice Assistant Example')
|
||||
parser.add_argument('-x','--model-family', type=str, required=True,
|
||||
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
|
||||
help='the model family')
|
||||
parser.add_argument('-m','--model-path', type=str, required=True,
|
||||
help='the path to the converted llm model')
|
||||
parser.add_argument('-t','--thread-num', type=int, default=2,
|
||||
help='Number of threads to use for inference')
|
||||
parser.add_argument('-c','--context-size', type=int, default=512,
|
||||
help='Maximum context size')
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
||||
|
|
@ -92,7 +92,7 @@ arguments info:
|
|||
- `-m MODEL_PATH`: **required**, path to the model
|
||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
|
||||
|
||||
#### 5.1. RAG (Retrival Augmented Generation)
|
||||
#### 5.2. RAG (Retrival Augmented Generation)
|
||||
|
||||
```bash
|
||||
python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]
|
||||
Loading…
Reference in a new issue