Remove native_int4 in LangChain examples (#10510)

* rebase the modify to ipex-llm

* modify the typo
This commit is contained in:
hxsz1997 2024-03-27 17:48:16 +08:00 committed by GitHub
parent 924e01b842
commit d86477f14d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 1 additions and 467 deletions

View file

@ -66,8 +66,3 @@ python transformers_int4/voiceassistant.py -m <path_to_model> [-q <your_question
- `-x MAX_NEW_TOKENS`: the max new tokens of model tokens input
- `-l LANGUAGE`: you can specify a language such as "english" or "chinese"
- `-d True|False`: whether the model path specified in -m is saved low bit model.
### Legacy (Native INT4 examples)
IPEX also provides langchain integrations using native INT4 mode. Those examples can be foud in [native_int4](./native_int4/) folder. For detailed instructions of settting up and running `native_int4` examples, refer to [Native INT4 Examples README](./README_nativeint4.md).

View file

@ -1,128 +0,0 @@
# Langchain Native INT4 examples
The examples in [native_int4](./native_int4) folder show how to use langchain with `ipex-llm` native INT4 mode.
## Install ipex-llm
Follow the instructions in [Install](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm#install).
## Install Required Dependencies for langchain examples.
```bash
pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3
```
## Convert Models using ipex-llm
Follow the instructions in [Convert model](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm#convert-model).
## Run the examples
### 1. Streaming Chat
```bash
python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
```
arguments info:
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
- `-q QUESTION`: question to ask. Default is `What is AI?`.
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
### 2. Question Answering over Docs
```bash
python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
```
arguments info:
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
- `-i DOC_PATH`: **required**, path to the input document
- `-q QUESTION`: question to ask. Default is `What is AI?`.
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
### 3. Voice Assistant
> This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change.
Some extra dependencies are required to be installed for this example.
```bash
pip install SpeechRecognition
pip install pyttsx3
pip install PyAudio
pip install whisper.ai
pip install soundfile
```
```bash
python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE
```
arguments info:
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
- `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512.
When you see output says
> listening now...
Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them.
#### Known Issues
The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio:
```python
import pyaudio
import speech_recognition as sr
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1 # The desired number of input channels
RATE = 16000 # The desired rate (in Hz)
RECORD_SECONDS = 10 # Recording time (in second)
WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
print("*"*10, "Listening\n")
frames = []
data =0
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK) ## <class 'bytes'> ,exception_on_overflow = False
frames.append(data) ## <class 'list'>
print("*"*10, "Stop recording\n")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()
r = sr.Recognizer()
with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1:
audio = r.record(source1) # read the entire audio file
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
```
### 4. Math
This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b).
```bash
python transformers_int4/math.py -m MODEL_PATH -q QUESTION
```
arguments info:
- `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model
- `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.

View file

@ -1,110 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
import argparse
from langchain.vectorstores import Chroma
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
QA_PROMPT)
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from ipex_llm.langchain.llms import *
from ipex_llm.langchain.embeddings import *
def main(args):
input_path = args.input_path
model_path = args.model_path
model_family = args.model_family
query = args.question
n_ctx = args.n_ctx
n_threads=args.thread_num
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# split texts of input doc
with open(input_path) as f:
input_doc = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(input_doc)
model_family_to_embeddings = {
"llama": LlamaEmbeddings,
"gptneox": GptneoxEmbeddings,
"bloom": BloomEmbeddings,
"starcoder": StarcoderEmbeddings
}
model_family_to_llm = {
"llama": LlamaLLM,
"gptneox": GptneoxLLM,
"bloom": BloomLLM,
"starcoder": StarcoderLLM
}
if model_family in model_family_to_embeddings and model_family in model_family_to_llm:
llm_embeddings = model_family_to_embeddings[model_family]
langchain_llm = model_family_to_llm[model_family]
else:
raise ValueError(f"Unknown model family: {model_family}")
# create embeddings and store into vectordb
embeddings = llm_embeddings(model_path=model_path, n_threads=n_threads, n_ctx=n_ctx)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
# get relavant texts
docs = docsearch.get_relevant_documents(query)
bigdl_llm = langchain_llm(
model_path=model_path, n_ctx=n_ctx, n_threads=n_threads, callback_manager=callback_manager
)
doc_chain = load_qa_chain(
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=callback_manager
)
doc_chain.run(input_documents=docs, question=query)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain QA over Docs Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')
parser.add_argument('-i', '--input-path', type=str, required=True,
help='the path to the input doc.')
parser.add_argument('-q', '--question', type=str, default='What is AI?',
help='qustion you want to ask.')
parser.add_argument('-c','--n-ctx', type=int, default=2048,
help='the maximum context size')
parser.add_argument('-t','--thread-num', type=int, default=2,
help='number of threads to use for inference')
args = parser.parse_args()
main(args)

View file

@ -1,82 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
import argparse
from ipex_llm.langchain.llms import *
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
def main(args):
question = args.question
model_path = args.model_path
model_family = args.model_family
n_threads = args.thread_num
template ="""{question}"""
prompt = PromptTemplate(template=template, input_variables=["question"])
# Callbacks support token-wise streaming
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
model_family_to_llm = {
"llama": LlamaLLM,
"gptneox": GptneoxLLM,
"bloom": BloomLLM,
"starcoder": StarcoderLLM,
"chatglm": ChatGLMLLM
}
if model_family in model_family_to_llm:
langchain_llm = model_family_to_llm[model_family]
else:
raise ValueError(f"Unknown model family: {model_family}")
# Verbose is required to pass to the callback manager
llm = langchain_llm(
model_path=model_path,
n_threads=n_threads,
callback_manager=callback_manager,
verbose=True
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
llm_chain.run(question)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain Streaming Chat Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')
parser.add_argument('-q', '--question', type=str, default='What is AI?',
help='qustion you want to ask.')
parser.add_argument('-t','--thread-num', type=int, default=2,
help='Number of threads to use for inference')
args = parser.parse_args()
main(args)

View file

@ -1,141 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
# Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant
from langchain import LLMChain, PromptTemplate
from ipex_llm.langchain.llms import *
from langchain.memory import ConversationBufferWindowMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import speech_recognition as sr
import pyttsx3
import argparse
def prepare_chain(args):
model_path = args.model_path
model_family = args.model_family
n_threads = args.thread_num
n_ctx = args.context_size
# Use a easy prompt could bring good-enough result
# You could tune the prompt based on your own model to perform better
template = """
{history}
Q: {human_input}
A:"""
prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
# We use our BigDLCausalLLM to subsititute OpenAI web-required API
model_family_to_llm = {
"llama": LlamaLLM,
"gptneox": GptneoxLLM,
"bloom": BloomLLM,
"starcoder": StarcoderLLM,
"chatglm": ChatGLMLLM
}
if model_family in model_family_to_llm:
langchain_llm = model_family_to_llm[model_family]
else:
raise ValueError(f"Unknown model family: {model_family}")
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = langchain_llm(
model_path=model_path,
n_threads=n_threads,
callback_manager=callback_manager,
verbose=True,
n_ctx=n_ctx,
stop=['\n\n'] # You could tune the stop words based on your own model to perform better
)
# Following code are complete the same as the use-case
voiceassitant_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(k=2),
)
return voiceassitant_chain
def listen(voiceassitant_chain):
engine = pyttsx3.init()
r = sr.Recognizer()
with sr.Microphone() as source:
print("Calibrating...")
r.adjust_for_ambient_noise(source, duration=5)
# optional parameters to adjust microphone sensitivity
# r.energy_threshold = 200
# r.pause_threshold=0.5
print("Okay, go!")
while 1:
text = ""
print("listening now...")
try:
audio = r.listen(source, timeout=5, phrase_time_limit=30)
print("Recognizing...")
# whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages
# other speech recognition models are also available.
text = r.recognize_whisper(
audio,
model="medium.en",
show_dict=True,
)["text"]
except Exception as e:
unrecognized_speech_text = (
f"Sorry, I didn't catch that. Exception was: {e}s"
)
text = unrecognized_speech_text
print(text)
response_text = voiceassitant_chain.predict(human_input=text)
print(response_text)
engine.say(response_text)
engine.runAndWait()
def main(args):
chain = prepare_chain(args)
listen(chain)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BigDLCausalLM Langchain Voice Assistant Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox", "chatglm", "starcoder"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')
parser.add_argument('-t','--thread-num', type=int, default=2,
help='Number of threads to use for inference')
parser.add_argument('-c','--context-size', type=int, default=512,
help='Maximum context size')
args = parser.parse_args()
main(args)

View file

@ -92,7 +92,7 @@ arguments info:
- `-m MODEL_PATH`: **required**, path to the model
- `-q QUESTION`: question to ask. Default is `What is AI?`.
#### 5.1. RAG (Retrival Augmented Generation)
#### 5.2. RAG (Retrival Augmented Generation)
```bash
python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]