refactor qwen (#11074)

This commit is contained in:
Yishuo Wang 2024-05-20 18:08:37 +08:00 committed by GitHub
parent 74950a152a
commit d830a63bb7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 104 additions and 483 deletions

View file

@ -717,40 +717,6 @@ def _optimize_pre(model):
# baichuan2-7B
from ipex_llm.transformers.models.baichuan2 import pre_compute_inv_freq
model.apply(pre_compute_inv_freq)
if model.config.model_type == "qwen":
rope_base = model.config.rotary_emb_base
from accelerate.big_modeling import init_empty_weights
def split_qkv_proj_func(module):
if "QWenAttention" in module.__class__.__name__:
c_attn_weight = module.c_attn.weight.data
c_attn_bias = module.c_attn.bias.data
# Compatible with AutoTP case
projection_size = c_attn_weight.shape[0] // 3
hid_size = module.hidden_size
with init_empty_weights():
q_proj = torch.nn.Linear(hid_size, projection_size)
k_proj = torch.nn.Linear(hid_size, projection_size)
v_proj = torch.nn.Linear(hid_size, projection_size)
if not model.config.to_dict().get("bigdl_transformers_low_bit", False):
q_proj.weight = torch.nn.Parameter(
c_attn_weight[:projection_size, :], requires_grad=False)
q_proj.bias = torch.nn.Parameter(
c_attn_bias[:projection_size], requires_grad=False)
k_proj.weight = torch.nn.Parameter(
c_attn_weight[projection_size: 2 * projection_size, :], requires_grad=False)
k_proj.bias = torch.nn.Parameter(
c_attn_bias[projection_size: 2 * projection_size], requires_grad=False)
v_proj.weight = torch.nn.Parameter(
c_attn_weight[2 * projection_size:, :], requires_grad=False)
v_proj.bias = torch.nn.Parameter(
c_attn_bias[2 * projection_size:], requires_grad=False)
module.q_proj = q_proj
module.k_proj = k_proj
module.v_proj = v_proj
module.rope_base = rope_base
del module.c_attn
model.apply(split_qkv_proj_func)
if model.config.model_type == "stablelm":
# For stablelm-zephyr-3b and stablelm-2-zephyr-1_6b
from ipex_llm.transformers.models.stablelm import merge_qkv

View file

@ -22,43 +22,24 @@
# LICENSE file in the root directory of this source tree.
#
import importlib
import math
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
from typing import Optional, Tuple, Union, Callable, List
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers.utils import logging
try:
from einops import rearrange
except ImportError:
rearrange = None
from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import update_past_key_value, should_use_fuse_rope
from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import rotate_half, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_fp8
from ipex_llm.transformers.models.utils import use_decoding_fast_path
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.utils.common import invalidInputError, invalidOperationError
from ipex_llm.ggml.quantize import ggml_tensor_qtype
from transformers.modeling_outputs import BaseModelOutputWithPast
apply_rotary_emb_func = None
flash_attn_unpadded_func = None
logger = logging.get_logger(__name__)
import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
def apply_rotary_pos_emb(t, freqs):
cos, sin = freqs
@ -71,25 +52,6 @@ def apply_rotary_pos_emb(t, freqs):
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
def should_use_fuse_rope(self, query_states):
use_fuse_rope = query_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
return use_fuse_rope
def is_enough_kv_cache_room(layer_past, kv_seq_len=1):
# to determinate if is enough kv cache room in transformers between 4.31 and 4.35
# seq_len for current seq len
# For llama like kv cache, i.e., [bs, n_head, seq_len, head_dim]
if layer_past is None:
return False
else:
cache_k, cache_v = layer_past[0], layer_past[1]
cache_k = cache_k.transpose(1, 2)
cache_v = cache_v.transpose(1, 2)
return cache_k.stride(1) < (kv_seq_len + 1) * cache_k.size(3)
def qwen_attention_forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
@ -102,429 +64,120 @@ def qwen_attention_forward(
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = qwen_attention_forward_quantized
else:
forward_function = qwen_attention_forward_original
return forward_function(
self,
hidden_states,
rotary_pos_emb_list,
layer_past,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
use_cache,
)
def qwen_attention_forward_original(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
):
invalidInputError(not self.use_flash_attn and not self.use_cache_quantization,
"flash attn and kv_cache quantization are not supported")
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype
position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids
rotary_pos_emb_list = rotary_pos_emb_list[:-1]
past_key_value = (None if layer_past is None
else (layer_past[0].transpose(1, 2), layer_past[1].transpose(1, 2)))
use_fuse_rope = should_use_fuse_rope(self, hidden_states)
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
True,
bsz * q_len)
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k, cache_v = layer_past[0], layer_past[1]
cache_k = cache_k.transpose(1, 2)
cache_v = cache_v.transpose(1, 2)
kv_seq_len = cache_k.shape[-2]
base = self.rope_base
if is_enough_kv_cache_room(layer_past, kv_seq_len):
new_cache_k, new_cache_v = extend_kv_cache(bsz,
qkv = self.c_attn(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=hidden_states.device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
self.num_heads], dim=1)
args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
self.v_proj.bias.data, position_ids, cache_k, cache_v, self.q_proj.weight.qtype,
self.v_proj.weight.qtype, kv_seq_len, self.head_dim, base]
import linear_q4_0
query, key, value = linear_q4_0.forward_qkv_bias(*args)
kv_seq_len += 1
query_size, key_size = 1, 1
else:
query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
# TODO: speed up
# mixed_x_layer = self.c_attn(hidden_states)
# query, key, value = mixed_x_layer.split(self.split_size, dim=2)
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]
# query = self._split_heads(query, self.num_heads, self.head_dim)
# key = self._split_heads(key, self.num_heads, self.head_dim)
# value = self._split_heads(value, self.num_heads, self.head_dim)
if len(rotary_pos_emb_list) != 0:
cur_len = query.shape[1]
if len(rotary_pos_emb_list) == 1:
# IPEX-LLM OPT: fuse rope
position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids
inv_freq = rotary_pos_emb_list[-2]
rotary_pos_emb_list = rotary_pos_emb_list[:-2]
invalidInputError(len(rotary_pos_emb_list) == 1,
"rotary_pos_emb_list's length cannot be larger than 1")
use_fuse_rope = should_use_fuse_rope(hidden_states, position_ids, self.training)
rotary_pos_emb = rotary_pos_emb_list[0]
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
if use_fuse_rope:
cos, sin = rotary_pos_emb
cos = cos.to(query.dtype)
sin = sin.to(query.dtype)
query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key, sin, cos, "qwen")
rot_dim = rotary_pos_emb[0].size(-1)
import linear_q4_0
linear_q4_0.rotary_half_inplaced(inv_freq, position_ids,
query_states[..., :rot_dim], key_states[..., :rot_dim])
else:
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query = apply_rotary_pos_emb(query, q_pos_emb)
key = apply_rotary_pos_emb(key, k_pos_emb)
else:
query_list = []
key_list = []
for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
if use_fuse_rope:
cos, sin = rotary_pos_emb
cos = cos.to(query.dtype)
sin = sin.to(query.dtype)
query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key,
sin, cos, "qwen")
query_list += [query]
key_list += [key]
else:
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
query = torch.cat(query_list, dim=0)
key = torch.cat(key_list, dim=0)
query_size, key_size = query.size(1), key.size(1)
kv_seq_len = key_size if layer_past is None else key_size + layer_past[0].size(1)
rotary_pos_emb = [i[:, -q_len:, :, :].transpose(1, 2) for i in rotary_pos_emb]
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)
if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training:
seq_start = kv_seq_len - query_size
seq_start = kv_seq_len - q_len
seq_end = kv_seq_len
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
query = query * logn_tensor.expand_as(query)
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].transpose(1, 2)
query_states = query_states * logn_tensor.type_as(query_states).expand_as(query_states)
if query_size > 1:
causal_mask = torch.tril(
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query.device)
).view(1, 1, kv_seq_len, kv_seq_len)
causal_mask = causal_mask[
:, :, kv_seq_len - query_size:kv_seq_len, :kv_seq_len
]
else:
causal_mask = None
# IPEX-LLM OPT: kv cache and quantzie kv cache
use_quantize_kv = use_quantize_kv_cache(self.c_attn, hidden_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states.transpose(1, 2),
value_states.transpose(1, 2)) if use_cache else None
if layer_past is not None:
if not decoding_fast_path:
cache_k, cache_v = layer_past[0], layer_past[1]
cache_k = cache_k.transpose(1, 2)
cache_v = cache_v.transpose(1, 2)
if cache_k.stride(1) < kv_seq_len * cache_k.size(3):
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=hidden_states.device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v,
key.transpose(1, 2), value.transpose(1, 2))
key = key_states
value = value_states
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key.dtype,
device=hidden_states.device)
new_key_states[:] = key.transpose(1, 2)
new_value_states[:] = value.transpose(1, 2)
key = new_key_states
value = new_value_states
if not decoding_fast_path:
query = query.transpose(1, 2)
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query, key):
attn_output = F.scaled_dot_product_attention(query.to(device, dtype=torch.float16),
key.to(device, dtype=torch.float16),
value.to(device, dtype=torch.float16),
is_causal=True)
attn_output = attn_output.view(query.shape)
attn_output = attn_output.transpose(1, 2)
# IPEX-LLM OPT: sdp
attn_weights = None
elif not self.training and not hidden_states.requires_grad and \
use_sdp(q_len, key.shape[2], self.head_dim, query):
if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import linear_q4_0
attn_output = linear_q4_0.sdp(query, key, value, attention_mask)
attn_output = attn_output.view(query.shape)
attn_output = attn_output.transpose(1, 2)
attn_weight = None
if use_quantize_kv:
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
else:
attn_output, attn_weight = self._attn(
query.to(key.dtype), key, value, causal_mask, attention_mask, head_mask
)
context_layer = self._merge_heads(
attn_output, self.num_heads, self.head_dim
)
attn_output = self.c_proj(context_layer).to(original_dtype)
if use_cache:
outputs = (attn_output, (key.transpose(1, 2), value.transpose(1, 2)))
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
else:
outputs = (attn_output, None)
if output_attentions:
outputs += (attn_weight,)
return outputs
def qwen_attention_forward_quantized(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
):
invalidInputError(not self.use_flash_attn and not self.use_cache_quantization,
"flash attn and kv_cache quantization are not supported")
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
position_ids = rotary_pos_emb_list[-1] # the last one is posisiton_ids
rotary_pos_emb_list = rotary_pos_emb_list[:-1]
use_fuse_rope = should_use_fuse_rope(self, hidden_states)
# qtype_check = decoding_fast_path_qtype_check(self.q_proj)
# TODO: use when decoding_fast_path = (qtype_check and use_fuse_rope and bsz * q_len == 1)
decoding_fast_path = False
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
tmp_cache_k, tmp_cache_v = init_kv_cache(
bsz,
self.num_heads,
self.head_dim,
0,
1,
dtype=hidden_states.dtype,
device=device
)
base = self.rope_base
args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
self.v_proj.bias.data, position_ids, tmp_cache_k, tmp_cache_v,
self.q_proj.weight.qtype, self.v_proj.weight.qtype, 0, self.head_dim, base]
import linear_q4_0
query, key, value = linear_q4_0.forward_qkv_bias(*args)
self.kv_seq_len += 1
kv_seq_len = self.kv_seq_len
query_size, key_size = 1, 1
else:
query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
# TODO: speed up
# mixed_x_layer = self.c_attn(hidden_states)
# query, key, value = mixed_x_layer.split(self.split_size, dim=2)
# query = self._split_heads(query, self.num_heads, self.head_dim)
# key = self._split_heads(key, self.num_heads, self.head_dim)
# value = self._split_heads(value, self.num_heads, self.head_dim)
if rotary_pos_emb_list is not None:
cur_len = query.shape[1]
if len(rotary_pos_emb_list) == 1:
rotary_pos_emb = rotary_pos_emb_list[0]
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
if use_fuse_rope:
cos, sin = rotary_pos_emb
cos = cos.to(query.dtype)
sin = sin.to(query.dtype)
query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key, sin, cos, "qwen")
else:
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query = apply_rotary_pos_emb(query, q_pos_emb)
key = apply_rotary_pos_emb(key, k_pos_emb)
else:
query_list = []
key_list = []
for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
if use_fuse_rope:
cos, sin = rotary_pos_emb
cos = cos.to(query.dtype)
sin = sin.to(query.dtype)
query, key = apply_rotary_pos_emb_cache_freq_xpu(query, key,
sin, cos, "qwen")
query_list += [query]
key_list += [key]
else:
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
query = torch.cat(query_list, dim=0)
key = torch.cat(key_list, dim=0)
query_size, key_size = query.size(1), key.size(1)
kv_seq_len = key_size if layer_past is None else key_size + layer_past[0].size(1)
if kv_seq_len > self.seq_length and self.use_logn_attn and not self.training:
seq_start = kv_seq_len - query_size
seq_end = kv_seq_len
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
query = query * logn_tensor.expand_as(query)
if query_size > 1:
if q_len > 1:
causal_mask = torch.tril(
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query.device)
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
).view(1, 1, kv_seq_len, kv_seq_len)
causal_mask = causal_mask[
:, :, kv_seq_len - query_size:kv_seq_len, :kv_seq_len
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
]
attention_mask = torch.zeros(causal_mask.shape, dtype=query_states.dtype,
device=query_states.device)
attention_mask.masked_fill_(causal_mask.logical_not(),
torch.finfo(attention_mask.dtype).min)
attention_mask = attention_mask.expand([bsz, -1, -1, -1])
else:
causal_mask = None
attention_mask = None
if layer_past is None:
query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
# query, key, value's shape: [bs, num_heads, seq_len, head_dim]
# save kv seq len for decoding_fast_path
self.kv_seq_len = key.shape[-2]
# For first token, use original attn
attn_output, attn_weight = self._attn(
query, key, value, causal_mask, attention_mask, head_mask
)
if use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
k_cache, v_cache = init_fp8_kv_cache(
query.size(0), self.num_heads, kv_seq_len, self.head_dim,
device=query.device
)
key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import linear_q4_0
if use_quantize_kv:
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
if decoding_fast_path:
k_cache, v_cache = layer_past[0], layer_past[1]
# k_cache and v_cache's shape: [bs, num_heads, context_length, head_dim]
attn_output = linear_q4_0.sdp(query_states, key_states, value_states,
attention_mask)
else:
query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
k_cache, v_cache = layer_past[0], layer_past[1]
k_cache = k_cache.transpose(1, 2)
v_cache = v_cache.transpose(1, 2)
# k_cache and v_cache's shape: [bs, num_heads, context_length, head_dim]
key, value = append_fp8_kv_cache(k_cache, v_cache, key, value)
attn_output, attn_weight = core_attn(
self, query, key, value, causal_mask, attention_mask, head_mask
)
context_layer = self._merge_heads(
attn_output, self.num_heads, self.head_dim
)
attn_output = self.c_proj(context_layer)
if use_cache:
outputs = (attn_output, (key.transpose(1, 2), value.transpose(1, 2)))
else:
outputs = (attn_output, None)
if output_attentions:
outputs += (attn_weight,)
return outputs
def core_attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
if not use_sdp_fp8(query.size(2), key.size(2), query):
# We have no CPU fp8 matmul implementation for now, so just upscale to fp32
key, value = restore_fp8_kv_cache(key, value, query.dtype)
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if self.scale_attn_weights:
if self.use_cache_quantization:
size_temp = value[0].size(-1)
else:
size_temp = value.size(-1)
attn_weights = attn_weights / (size_temp ** 0.5)
mask_value = torch.finfo(attn_weights.dtype).min
if causal_mask is not None:
attn_weights = torch.where(
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
)
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if self.softmax_in_fp32:
attn_weights = torch.nn.functional.softmax(attn_weights.float(), dim=-1)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(
value_states.dtype)
else:
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
attn_weights = attn_weights.type(query.dtype)
attn_weights = self.attn_dropout(attn_weights)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = self.c_proj(attn_output)
# We have no CPU fp8 matmul implementation for now, so just upscale to fp32
attn_output = torch.matmul(attn_weights, value)
if output_attentions:
return attn_output, past_key_value, attn_weights
else:
import linear_q4_0
attn_output = linear_q4_0.sdp_fp8(query, key, value,
attention_mask)
attn_weights = None
attn_output = attn_output.transpose(1, 2)
return attn_output, attn_weights
return attn_output, past_key_value
def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
@ -652,9 +305,11 @@ def qwen_model_forward(
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
ntk_alpha_list.append(ntk_alpha)
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
# ipex-llm changes
rotary_pos_emb_list = [
self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
] + [position_ids]
] + [self.rotary_emb.inv_freq.to(self.dtype), position_ids]
# ipex-llm changes ends
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
@ -695,7 +350,7 @@ def qwen_model_forward(
encoder_attention_mask,
)
else:
# bigdl-llm changes
# ipex-llm changes
curr_device = block.ln_1.weight.device
from accelerate.utils.operations import send_to_device
if rotary_pos_emb_list is not None:
@ -709,7 +364,7 @@ def qwen_model_forward(
if encoder_attention_mask is not None:
encoder_attention_mask = send_to_device(encoder_attention_mask,
curr_device)
# bigdl-llm changes ends
# ipex-llm changes ends
outputs = block(
hidden_states,

View file

@ -188,5 +188,5 @@ class Test_Optimize_Gpu_Model:
# currently only need to compare the output of one self-attention layer.
layer_norm = "transformer.h.31.ln_1"
self_attn = "transformer.h.31.attn"
lower_bound = 8e-3
lower_bound = 2e-2
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)